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ABSTRACT 
 
Silva, R.U.,   De Basabe, J.D.,  Sen, M.K.,  González-Escobar, M.,  Gómez-Treviño, E.  and 
Solorza-Calderón, S., 2020. Cooperative full waveform and gravimetric inversion. Journal of 
Seismic Exploration, 29: 549-573. 

 
There has been an increasing interest in recent years in the inversion of multiple 

geophysical data sets to obtain a consistent subsurface model for exploration and 
exploitation purposes. We employ cooperative inversion of gravity and seismic data for 
estimating a velocity and density model which fits observed data on the surface. This 
particular combination is motivated by the fact that the horizontal resolution of a model 
can be resolved by gravity inversion while the vertical resolution can be better estimated 
from the seismic data. We develop an iterative scheme based on full waveform inversion 
(FWI) and petrophysical relations that minimizes the misfit between the observed and 
synthetic data measured at the surface for gravimetric stations and seismograms. Our 
algorithm exploits the benefits of each of the geophysical methods. It uses the adjoint-
state method for the computation of the gradient needed for FWI and uses a constrained 
Conjugate Gradient Least Squares method for gravimetric inversion subject to the 
discrepancies between the density and the velocity models using petrophysical 
relationships between these properties. We tested our algorithm on three synthetic 
models:   The first model is a  Texas-shaped structure with a high-velocity region beneath 
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some horizontal layers with low velocities, the second example consists of a more 
complex version of the Texas-shaped model adding more heterogeneities and faults with 
the addition of random noise on the observed data, and the final model is a 3D example 
of cooperative gravimetric and full waveform inversion. In all the examples, we were 
able to fit the data and achieve iterative convergence, recovering the interface between 
layers and the top and shape of the higher-velocity body. The numerical examples 
demonstrate that the proposed method can be used to successfully combine gravimetric 
and seismic data sets to obtain a consistent subsurface model without incurring the 
computational cost of traditional joint-inversion methods. 

 
KEY WORDS: full waveform inversion (FWI), gravimetric inversion, finite differences. 
 
 
 
INTRODUCTION 
 

 The challenges of geophysical exploration for the exploitation of 
natural resources and reservoir characterization are increasing and require 
incorporation of more information collected on the surface. In order to be 
able to obtain more detailed subsurface models, we need to be able to 
combine the data from different geophysical methods. In this paper, we 
study the acoustic properties of the subsurface layers using seismic 
observations and density variation through the measurement of gravity 
anomalies. 

 
 Full Waveform Inversion (FWI) (Tarantola, 1984; 1986) is a powerful 

seismic-imaging method used to estimate a velocity model (P-wave velocity 
model for acoustic FWI) with the objective of minimizing the discrepancies 
between observed and synthetic seismograms using a gradient-based 
optimization method. FWI has become a popular method (Virieux and 
Operto, 2009) and it has improved significantly throughout the years, 
reducing the computational cost and improving the resolution of the seismic 
image. 

 
 FWI consists of three main steps performed iteratively for the 

inversion. The first step is the forward modeling to compute the synthetic 
data starting from an initial model and obtain the residual subtracting the 
observed data. Several authors have used the Finite Difference Method 
(FDM)  (Alford et al., 1974; Virieux, 1986) for waveform modeling, 
however, the Finite Element Method (FEM) (Marfurt, 1984) and the 
Spectral Element Method (SEM) (Komatitsch and Tromp, 1999) are 
becoming increasingly popular. The second step is to back-propagate the 
residual wave-field (adjoint field). Then, a cross-correlation between the 
forward and the adjoint wave-field is computed and, adding over all times 
and all sources, a velocity gradient is obtained. This is the well-known 
adjoint method (Plessix, 2006), which reduces significantly the 
computational cost because only two forward modelings are required in each 
iteration of the inversion process. On the final step, the velocity model is 
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updated adding to the starting model the scaled velocity gradient using a 
line-search method to determine the increment. If the observed and synthetic 
data do not match, these steps are performed iteratively until a stop criterion 
is reached. This methodology has provided good results for stratigraphic and 
predominantly horizontal layered models. Despite the good results both in 
acoustic and elastic media, density variation has largely been ignored 
(Virieux and Operto, 2009). 

 
 The study of gravimetric data is important for estimating density 

variations of the subsoil measuring the gravity or the gravity gradient tensor 
on the surface (Zhdanov et al., 2004). Several forward modeling methods 
exist to compute gravity anomalies by solving Poisson's equation for the 
gravitational potential. Among the best-known methods is the analytical 
solution for prismatic (Nagy, 1966; Bhattacharyya and Leu, 1977), however, 
solutions for other geometries are readily available (Talwani, 1965; Johnson 
and Litehiser, 1972; Werner, 1994; García-Abdeslem, 2005). Analogous to 
waveform modeling, gravity modeling has been also explored using FEM 
recently (Martin et al., 2017). In this work, we will use the solution for 
uniform rectangular prisms to be congruent with the grid used on finite 
differences for waveform modeling. 

 
 Gravimetric inversion for density estimation is a linear problem. This 

method is well known for estimating structures with horizontal changes of 
mass distribution. The solution is straightforward using Gauss-Newton 
minimization (Sen and Stoffa, 2013) to obtain a density model inverting the 
Hessian matrix on a single step. This method is widely used among 
geophysicists because of its fast convergence, however, it is computationally 
expensive and infeasible for large-scale problems, because a square matrix 
needs to be stored and inverted. One alternative for this problem is to use the 
Conjugate Gradient Least Squares method (CGLS). This solves the inverse 
problem without the need to form and store the Hessian matrix (Sen and 
Stoffa, 2013). 

 
 Taking into consideration the sensitivity and resolution of each 

method, a complex geological environment can be investigated by exploiting 
the advantages of both methods using a cooperative inversion scheme of 
seismic and gravimetric data sets. Vozoff and Jupp (1975) were the first to 
perform joint inversion for different geophysical data sets, namely resistivity 
and magnetotelluric data. Following this, numerous methodologies and 
different geophysical data-inversion schemes emerged becoming a popular 
cooperative integration technique for the reduction of non-uniqueness and 
ambiguity in the interpretation of the Earth model. Depending on the 
constraints in the optimization problem, the joint inversion schemes can be 
classified into petrophysical, structural or statistical. Petrophysical joint 
inversion is subject to empirical relationships of the model parameters 
(Menichetti and Guillen, 1983; Lees and VanDecar, 1991; Zeyen and Pous, 
1993), structural joint inversion seeks to minimize the cross product of the 
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gradient of each model parameter (Gallardo and Meju, 2003, 2004) and  
statistical joint inversion tries to solve the problem attaching to each grid cell 
of the model a mean point (fuzzy c-mean) depending on the number of c-
means (Paasche and Tronicke, 2007; Romero and Gallardo, 2015). 

 
 One of the most examined joint geophysical interpretation is the 

cooperative inversion of seismic and gravimetric data since this method 
complements each other and both theories depend on the density of the 
medium. One such example is the work of Roy et al. (2005) which performs 
first-arrival travel time inversion jointly with gravity data using very fast 
simulated annealing. Works using seismic and gravity data were presented 
later (Tondi et al., 2009; Lin et al., 2012; Lin and Zhdanov, 2017; Colombo 
and Rovetta, 2018). On the other hand, Blom et al. (2017) stress the 
importance of density in geological processes and present a study for the 
role of density using seismic and gravimetric data, concluding that density 
estimation requires a strong a priori model to be able to determine it as an 
independent parameter. 

 
 We propose a novel cooperative inversion scheme using gravimetric 

inversion, a petrophysical relation and FWI. Petrophysical relationships 
between P-wave and density were presented first by Gardner et al. (1974), 
but lately Brocher (2005) documented a data compilation of crustal rocks 
from which he computed a polynomial fit, comparing it with other empirical 
relationships. We perform a gravimetric inversion constraining the density 
model obtained using Gardner's equation from the velocity model provided 
after FWI. Such constraint will be strong enough to avoid shallower models 
due to the nature of the gravimetric potential method. We use again a 
petrophysical relation to convert the density model into a velocity model and 
apply one iteration of FWI to obtain a new velocity model that better fits the 
seismic data. This process is performed iteratively until FWI converges to a 
solution, ensuring a data fit in seismic and gravity data. The importance of 
performing these steps sequentially is that it is more robust than trying to 
invert for velocity and density jointly, it has a lower computational cost and 
it allows for a better control of each problem separately. 

 
 Using this scheme, we obtain complex geological models that include 

a stratigraphic part around a body of high density-velocity. The gravimetric 
inversion can detect the higher density structure while FWI recovers the 
horizontal folded layers, including the top of the body. The cooperative 
inversion combines both methods to obtain a more reasonable model that 
minimizes the data residual for seismic and gravity data. We perform this 
inversion on two synthetic 2D models and one 3D model and observe that 
the results have less artifacts than those obtained using only FWI with 
minimal increase in the computational cost. 
 
FULL WAVEFORM INVERSION 
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 The time domain wave equation (Cohen, 2002) for an acoustic 
medium is given by 
 

 1
𝑉!
𝜕!𝑃(𝒙, 𝑡) 

𝜕𝑡!
− ∇!𝑃 𝒙, 𝑡 = 𝑓 𝒙, 𝑡 , (1) 

 
where 𝑃 is the pressure, 𝑓 is the seismic source and 𝑉 the P-wave velocity of 
the medium, this will be the model parameter estimated in FWI.  For the 
forward modeling problem, eq. (1) can be represented in terms of finite-
differences discrete operators of the time and spatial derivatives in a time 
stepping loop (Alford et al., 1974).  
 

 For acoustic FWI, the least-squares functional to minimize the misfit 
between the observed and the synthetic pressure is given by 

 

 𝑄 𝑉 =
1
2

𝑷!,!obs − 𝑷!,!cal
!
d𝑡

!

!!,!

 , (2) 

 
where 𝑷!,!obs is the observed pressure and 𝑷!,!cal  is the synthetic pressure 
computed by numerically solving eq. (1). 𝑇 is the total recording time, 𝑟 
denotes the receiver index and 𝑠 the source index. This misfit functional is 
minimized using an iterative procedure based on computing a velocity 
gradient using the adjoint method for acoustic media (Plessix, 2006) given 
by 
 

 𝛿 =
2
𝑉!

𝑃!(𝒙,𝑇 − 𝑡)
𝜕!𝑃(𝒙, 𝑡) 

𝜕𝑡!
d𝑡

!

!!

, (3) 

 
where 𝑃! is the adjoint pressure and also satisfies equation 1 using as source 
the data residual back-propagated in time. For example, for a single source 
 

 

1
𝑉!
𝜕!𝑃!(𝒙,𝑇 − 𝑡) 

𝜕𝑡!
− ∇!𝑃! 𝒙,𝑇 − 𝑡

= 𝑷!obs − 𝑷!cal
!

𝛿 𝒙 − 𝒙! . 
(4) 

 
The velocity model (V) can be updated iteratively using the gradient as 

follows 
 

 𝑉!!! = 𝑉! + 𝛼!𝛿, (5) 
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where 𝛼! is the optimal step for the 𝑛-th iteration calculated using a line-
search along the gradient using three or more points (Vigh and Starr, 2008). 
Notice that a large number of points can be used in the line-search to 
determine 𝛼!, however, each additional point involves an additional forward 
modeling to compute eq. (2), it is therefore preferred to use a few test steps. 
 
 
GRAVIMETRIC INVERSION 

 
 Newton's law of gravitation provides the gravitational potential Φ at 

an observation  point 𝒙 due to a body on Earth with density distribution 𝜌 as 
(Blakely, 1996) 

 Φ 𝒙 = 𝛾
𝜌(𝒙′)
𝒙 − 𝒙′

d𝒙′
!

, (6) 

 
where 𝛾 is the universal constant of gravitation and 𝒙′ is the position for 
each differential element of density over the domain Ω. In this work, we will 
use only the vertical component of the gravity acceleration on Cartesian 
coordinates, given by 
 

 𝑔! 𝒙 = −
𝜕Φ 𝒙
𝜕𝑧

= − 𝛾
𝜌 𝒙! 𝑧 − 𝑧!

𝒙 − 𝒙! ! d𝒙!
!

. (7) 

 
 For the case of a rectangular prism of constant density (Banerjee and 

Das Gupta, 1977), the analytic solution of eq. (7) is given by 

 

𝑔! =  𝛾 𝑧 tan!!
𝑥𝑦
𝑧|Δ𝑟|

− 𝑥 ln 𝑦 + Δ𝑟

− 𝑦 ln 𝑥 + |Δ𝑟|
!!!!

!!!!

!!!!

!!!!

!!!!

!!!!

𝜌 , 

(8) 

   
where Δ𝑟 = 𝑥! + 𝑦! + 𝑧!, Δ𝑥!! = 𝑥 − 𝑥!!  , Δ𝑦!! = 𝑦 − 𝑦!!  and 
Δ𝑧!! = 𝑧 − 𝑧!!  with 𝑘 = 1,2 for the prime coordinates (corners of the prism). 
This expression can be reduced easily for 2D media setting the y-coordinate 
equal to zero. Considering the contribution at stations from a model of 
𝑀 = 𝑛!×𝑛! prism, this expression can be represented in a matrix form as 
 
 𝒈!cal = 𝑨!𝒎!, (9) 
where 𝒈!cal is a 𝑁!×1 vector the gravity anomaly, 𝒎! is a 𝑀×1 vector 
containing the density distribution and 𝑨! is a 𝑁!×𝑀 matrix containing the 
part within brackets in eq. (8) as the density kernel. 
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 The objective function for density estimation due to measurements of 

the vertical component of the acceleration (𝒈!obs) using the L-2 norm is given 
by 

 

 𝑄 𝒎! =
𝒈!!
obs − 𝒈!!

cal

𝜎!!

!!!

!!!

+ 𝛼reg! 𝑫𝒎!
!
, (10) 

 
where 𝛼reg is the regularization parameter, 𝑫 is the discrete operator for the 
gradient and 𝜎!!is the standard deviation of the data. Solving this least-
squares problem using Gauss-Newton method (Sen and Stoffa, 2013) an 
estimated model 𝒎! can be obtained as 
 
 𝒎! = 𝑨!!𝑪!!!!𝑨! + 𝛼reg! 𝑫!𝑫

!!
𝑨!!𝑪!!!!𝒈!obs, (11) 

 
where 𝑪!!!!  is the diagonal covariance matrix. This least-squares 
implementation requires to store and invert the square matrix in eq. (11) with 
dimensions depending on the discretization of the model, i.e., 𝑀×𝑀. For a 
very fine discretization we encounter storage problems due to this 
implementation, whereas we need a fine discretization in the model to 
achieve a good resolution for the seismic inversion and therefore the joint 
inversion. One solution for this problem is the use of the Conjugate Gradient 
Least Squares (CGLS) method. This method minimizes the objective 
function of eq. (10) without the need to form and store the square matrix  
from eq. (11) (Sen and Stoffa, 2013) using a typical conjugate gradient 
technique. This method requires as an input 𝑮 and 𝒅!"  to find a solution, in 
this case, the density model (𝒎!) for 𝑮𝒎! = 𝒅!" , these matrices are given 
by 

 𝑮 = 𝑪!!
!!/!𝑨!
𝛼reg𝑫

, (12) 

 

 𝒅!" = 𝑪!!
!!/!𝒈!obs

𝟎
, (13) 

 
in this case, the matrix 𝑮 will be large and sparse due to the discrete operator 
of the Tikhonov regularization. 
COOPERATIVE INVERSION 
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 In this work we propose a sequential approach in which we solve at 
different stages for the densities and velocities, the resulting system is 
therefore more manageable and there is more control over the parameters at 
each stage. We call this a cooperative strategy to distinguish it from the joint 
strategies that solve for all the geophysical parameters together at every 
iteration. Unlike conventional joint inversions, where the problem is to 
minimize a two-part objective function (seismic and gravity errors), this 
cooperative inversion is based on alternately minimizing the errors in 
seismic and gravity data in an iterative fashion. The main reasons to perform 
these sequentially are to increase robustness and reduce the computational 
cost. Furthermore, in the proposed scheme we do not need to impose depth-
dependent weights or constrains to the gravimetric inversion to avoid 
shallower models, this is achieved instead by using the velocity model after 
FWI as the a priori gravimetric model. 

 
 The cooperative inversion for gravity and seismic data comprises an 

iterative scheme shown in the diagram of Fig. 1. It involves the following 
steps: from a starting velocity model, we perform FWI to update the velocity 
model, then, using Gardner's density-velocity relationship, we perform 
constrained gravimetric inversion to update the density model, finally, using 
Gardner's velocity-density relationship, a velocity model is obtained for use 
in FWI. These steps are repeated until a convergence criterion is satisfied. 

 
 

	
	
 
Fig. 1. Visual representation of our iterative inversion scheme for gravity and seismic 
data. 

 
 
 For the gravimetric-inversion step, we modify eq. (10) to include the 

velocity model obtained from FWI as a constraint as follows 
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𝑄 𝒎! =

𝒈!!
obs − 𝒈!!

cal

𝜎!!!

!!!

!!!

+ 𝛼reg! 𝑫𝒎!
!

+ 𝛽! 𝒎! −𝒎!(!)
!
, 

(14) 

 
where 𝒎! is the density model and 𝒎!(!) is the density model obtained 
using a petrophysical relationship as a function of the velocity model. Notice 
that the third term constraints the model to be similar to the one obtained 
from FWI and is weighted by the parameter 𝛽; this term allows us to restrict 
the gravimetric inversion and avoid shallow unrealistic models. We use the 
following relationship from (Gardner et al., 1974) as the petrophysical 
relation 
 𝜌 𝑉 = 𝜌! 𝑉!

!! ,  (15) 
 
where 𝜌! = 0.31 g/cm! and 𝑘! = 1/4. This relationship between P-wave 
velocity and density is valid for velocities in the range 1.5 < 𝑉! < 7.5 km/s 
for most sedimentary rocks (Gardner et al., 1974); however, any other 
relation can be used here to accommodate a particular target model. Given 
the range of velocities, it is important to point out that this relationship does 
not apply for salt body structures in the range 4.3 < 𝑉! < 5.0  km/s for 
velocity and 2 < 𝜌 < 2.2 g/cm! for density (Sheriff and Geldart, 1995). 
 

 As described in the previous section, eq. (14) can be minimized 
efficiently using CGLS, modifying 𝑮 and 𝒅!"  from eqs. (12) and (13) as 
follows 

 𝑮 =
𝑪!!
!!/!𝑨!
𝛼reg𝑫
𝛽𝑰

, (16) 

   

 𝒅!" =
𝑪!!
!!/!𝒈!obs

𝟎
𝛽𝒎!(!!)

, (17) 

 
where 𝑰 is the identity matrix. The algorithm to solve the system 𝑮𝒎! =
𝒅!"  is presented in algorithm 1 (Sen and Stoffa, 2013). Notice that an 
efficient implementation of this algorithm requires that all the matrices be 
stored in a sparse representation. 
Algorithm 1: CGLS algorithm to iteratively solve the problem 𝑮𝒎! = 𝒅!"  
  Data: 
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  𝒎!,𝒅! = 𝒅CG, 𝒓! = 𝑮!𝒅!" ,𝒑! = 𝒓!, 𝒕! = 𝑨𝒑!,𝑛-iterations   
  Result: model 𝒎! 

1 while 𝑘 < 𝑛 or stop criteria is satisfied do 
2  𝛼!   = 𝒓!!! !/ 𝒕!!! !  
3  𝒎! = 𝒎!!! + 𝛼!𝒑!!! 
4  𝒅!  = 𝒅!!! − 𝛼!𝒕!!! 
5  𝒓!  = 𝑮!𝒅! 
6  𝛽!  = 𝒓! !/ 𝒓!!! ! 
7  𝒑!  = 𝒓! + 𝛽!𝒑!!! 
8  𝒕!   = 𝑮𝒑!  
9  𝑘 ←  𝑘 + 1 

10 end 
 

 

 The resulting density model will give feedback to FWI using 
Gardner's density-velocity relationship to obtain a velocity model which will 
be the starting model to solve the next iteration of FWI. In practice, 
including the gravimetric data in the inversion process yields smoother 
models with less artifacts. 

 
 

CONVENTIONAL JOINT INVERSION 
 
 In a conventional joint-inversion scheme, different geophysical 

forward problems are simultaneously solved to obtain a consistent Earth-
property model which match the respective data sets measured at the 
surface. Usually the strategy consists of combining all the parameters into 
one objective function, leading to a large system of often disparate 
parameters (Roy et al., 2005). 

 
 Let us consider two arbitrary geophysical data sets 𝒅𝒎obs and 𝒅𝒏obs for 

the models 𝒎 and 𝒏. The generalized objective function involving two 
geophysical methods is given by 

   

 
𝑄Total(𝒎,𝒏) = 𝒅!obs − 𝒅!cal

!
 + 𝛼m! 𝑫𝒎 ! + 𝛽m! 𝒎−𝒎apr

!
 

 = 𝒅!obs − 𝒅!cal
!
 + 𝛼n! 𝑫𝒏 ! + 𝛽n! 𝒏− 𝒏apr

!
 

 + 𝛾!𝑄Joint(𝒎,𝒏) ,    
 

(18) 

 
where 𝛼m and 𝛼n are the Tikhonov regularization parameters, 𝛽m and 𝛽n are 
the a-priori model parameters, 𝒅!cal and 𝒅!cal are the synthetic data and 
𝑄Joint(𝒎,𝒏) is the joint inversion constraint between both models with its 
respective weight 𝛾. 
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 There are mainly three types of joint inversion techniques, depending 
on the functional 𝑄Joint: 

 
• Petrophysical joint inversion, where the models are constrained by 

an empirical relationship (Roy et al., 2005; Lin and Zhdanov, 
2017; Blom et al., 2017), in this case  
𝑄Joint 𝒎,𝒏 = 𝒎 −𝑯 𝒏 !, where  𝑯 is the petrophysical 
relation; 

• Structural joint inversion (Gallardo and Meju, 2003, 2004), where 
the functional is used to match the structure for both models trough 
the cross gradient, 𝑄Joint 𝒎,𝒏 = ∇𝒎×∇𝒏 !; and 

• Statistical joint inversion, e.g., using the fuzzy c-means technique 
(Paasche and Tronicke, 2007; Romero and Gallardo, 2015). 

  
 We will focus on the petrophysical joint inversion. Structural and 

statistical joint inversion techniques are beyond the scope of this paper and 
will be explored in future work. 

 
 In order to compare conventional joint inversion with the cooperative 

inversion proposed in this work, let us minimize eq. (18) subject to an 
arbitrary petrophysical relationship 𝒎 = 𝑯 𝒏 . Using a Gauss-Newton 
optimization we obtain the following system 

 
	 𝑨!! 𝑨! + 𝛼!! 𝑫!𝑫+ 𝛽!! 𝑰+ 𝛾!𝑰 −Θ𝛾𝟐

−Θ𝛾𝟐 𝑨!!𝑨! + 𝛼!!𝑫!𝑫+ 𝛽!!𝑰+ Θ𝟐𝛾!
	

𝒎

𝒏
 	

=	
     𝛾𝟐 𝑯 𝒏! − Θ𝒏! + 𝛽!!𝒎apr + 𝑨!! 𝒅!obs − 𝒅!cal 𝒎! + 𝑨!𝒎!

−Θ𝛾𝟐 𝑯 𝒏! − Θ𝒏!  + 𝛽!!𝒏apr  + 𝑨!!  𝒅!obs − 𝒅!cal 𝒏! + 𝑨!𝒏!
	 ,	

	

(19) 

 

where 𝑨! and 𝑨! are the Fréchet derivatives for each method  𝑫 is the 
discrete operator for the gradient ∇, 𝒎! and 𝒏! are the starting models 
(obtained from the linearized problem) and Θ = !𝑯

!"
 is the derivative of the 

petrophysical relationship evaluated at the starting model 𝒏!. Notice that if 
𝛾, eq. (19) is reduced to 

 

 𝑨!! 𝑨! + 𝛼!! 𝑫!𝑫 + 𝛽!! 𝑰 𝟎
𝟎 𝑨!!𝑨! + 𝛼!!𝑫!𝑫 + 𝛽!!𝑰

 
𝒎

𝒏
  

= 
   𝛽!!𝒎apr + 𝑨!! 𝒅!obs − 𝒅!cal 𝒎! + 𝑨!𝒎!

𝛽!!𝒏apr  + 𝑨!!  𝒅!obs − 𝒅!cal 𝒏! + 𝑨!𝒏!
 , 

 

(20) 

 

which corresponds to the separated inversion of each data set, since there is 
no constraint in the objective function, and the inverse of the matrix can be 
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obtained by blocks. For this work we consider that 𝒎 is the seismic model 
and 𝒏 is the gravimetric model. The Fréchet derivatives of the seismic 
functional are given by 𝐴! 𝑖, 𝑗 = !!!

!!!! 
, which correspond to the i-th 

derivative for the data 𝑃! for the j-th model parameter 𝑚!!. Notice that this 
results in large computational cost given that it implies performing forward 
modelings for each grid cell of the model, as opposed to the two forward 
modellings required by the adjoint method for FWI. For the gravimetric 
inversion, 𝑨! = 𝑨!, where 𝑨! is given in eq. (9). Finally, for the joint 
inversion, the derivative of the petrophysical function is given by 

 Θ = 4
1

0.31

!

𝒎!
!

!!!!!!

 (21) 

 
which corresponds to the derivative of Gardner's equation with respect to the 
density. 
 
 
RESULTS 
 

 In order to test the proposed cooperative inversion algorithm and 
show its advantages, we apply this method to three synthetic examples. The 
first example is a simple layered model with Texas-shaped structure of high 
velocity. In the second example we add random noise to the data and 
demonstrate that the method can recover the model under this conditions. 
Finally, we apply the method to a synthetic dataset for a 3D subsurface 
model. 

 
 

Texas-shape model I 
 
 For this example, we created a laterally heterogeneous layered model. 

Beneath the low velocity layers, we place a structure with the shape of 
Texas, as shown in Fig. 2a. The shallow layers have lower velocities 
(between 1500 and 2000 m/s) with respect to the deepest layer (≈ 3400 m/s). 
In addition to the high-velocity body, we placed two targets at medium depth 
to the left and to the right of the body. We used Gardner's density-velocity 
relationship to obtain the density model for gravity data as shown in Fig. 2c. 
Notice that the velocity values of the model are within the range of 
applicability of Gardner's equations. 
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(a)	 (b)	

	 	
(c)	 (d)	

	

	
Fig. 2. Texas-shaped true velocity model I (a) and its smoothing set as a starting model 
(b). Texas-shaped true density model I (c) and the starting density model (d). These 
models are obtained using Gardner density-velocity relationship. 

 
 
 The synthetic geophysical model covers a horizontal distance of 2000 

m and a depth of 1000 m for both seismic and gravimetric data. In order to 
be able to compare the cooperative and joint inversion strategies, we use a 
smaller mesh for this model (𝑛! = 100,𝑛! = 50). We modeled  𝑛! = 10 
sources equally spaced along the surface and recorded at 𝑛! = 100 receivers 
along the surface for the seismic and gravimetric stations. The total record 
time for the seismograms is 2 seconds and the time sampling depends on the 
stability condition of the forward modeling, resulting in 𝑛! = 750 samples. 
The source time function is a Ricker wavelet with a peak frequency of 8 Hz. 
In summary, we have 𝑛!×𝑛!×𝑛! = 750 000 seismic data points and 
𝑛! = 100 gravimetric data points, and are computing a model of 𝑛!×𝑛! =
5 000 cells for this simple example, therefore, the seismic problem is over-
determined whereas the gravimetric problem is under-determined.  In this 
case, the number of seismograms and gravimetric stations are equal. We 
emphasize that the method does not require that the number of stations be 
the same, however, we use the same location for the receivers for simplicity. 
Often in practice the number of gravimetric stations are less than the seismic 
stations, the method can accommodate for this but the reduction in 
computational cost would be negligible. 

 
 For comparison purposes, we use the same parameters and starting 

models in all the methods and perform 50 iterations. Furthermore, we also 
include the results of the separate inversions for seismic (FWI using adjoint 
method) and gravity (CGLS unconstrained). For the particular case of the 
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conventional joint inversion, the parameter 𝛾 was chosen empirically in a 
similar way as in the L-curve method (Hansen, 1992). 

 
 First, let us compare the results for the velocity model (Fig. 3). The 

conventional FWI process recovers the stratigraphic information including 
the medium-depth targets, as shown in Fig. 3a. The shape and velocity 
values of the high-contrast body are also approximately recovered. This 
result is similar to the one obtained using the proposed cooperative inversion 
(Fig. 3c). For the conventional joint inversion process (Fig. 3e), the general 
geometry is recovered, however, the basement, the Texas-shape body and 
the medium-depth targets have lower velocities and lower resolution. Fig. 4 
shows the normalized seismic misfits of the three methods with respect to 
the iteration number. The joint-inversion scheme stagnates after the 10th 
iteration, but FWI and the cooperative scheme achieve a smaller misfit. 

 
 

	 	
(a)	 (b)	

	 	
(c)	 (d)	

	 	
(e)	 (f)	

	

 
 
Fig. 3. Texas-shape velocity model I results for (a) conventional FWI using adjoint 
method, (c) petrophysical cooperative inversion, and (e) conventional joint inversion 
using Gauss-Newton. Texas-shaped density model I results for (b) conventional 
gravimetric inversion, (d) petrophysical cooperative inversion and (f) conventional joint 
inversion using Gauss-Newton. 
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Fig. 4. Normalized misfit for seismic (red) and gravity (blue) for the Texas-shaped model I. 

 
 The results of the computed densities are shown in Fig. 3. Once again, 

the model losses the stratigraphic information when conventional 
gravimetric inversion is employed (Fig. 3b), resulting on a shallower density 
model. When conventional joint inversion is applied, the shape and position 
of the central body is obtained, however, the two targets at the left and right 
of the model are not identified (Fig. 3f). On the other hand, using 
cooperative inversion (Fig. 3d), all the targets are recovered better than with 
the other two methods. 

 
 

Table1. Cost of the objective function and computational cost for 50 iterations for each 
inversions method discussed. The computational cost is normalized with respect to the 
cost of conventional FWI. 

 
Inversion 
Method 

Objective Function 
Cost Reduction 

Computational 
Time (50 Iterations) 

Conventional Joint 
Conventional FWI 
Cooperative 

37.5 % 
11.4 % 
15.6 % 

681.63 
1.00 
1.02 

 
The main difference between the three methods is in the computational 

cost. Table 1 shows the execution times for performing 50 iterations with 
each of the 3 methods, normalized using the time of the conventional FWI. 
The computational cost for conventional joint inversion using the Gauss-
Newton method is significantly higher than that of the other methods, this is 
mainly due to the computation of the Fréchet derivatives. On the other hand, 
the overhead of the proposed cooperative scheme is comparatively small, 
amounting to 2 % in this example, and the computational cost of inverting 
the gravimetric data is almost negligible (0.3 % of the cost of FWI). 
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Texas-shape model II with noisy data 
 
 For this example, we modify the Texas-shaped model I from the 

previous example by increasing its complexity and resolution (𝑛! =
200,𝑛! = 100). We added more heterogeneities to the low-velocity layers 
and added faults in some layers of the model, keeping the Texas-shaped 
body (see Fig. 5a). Additionally, we put five objects at different depths with 
an appreciable velocity contrast, these objects emulate geological traps. We 
discretize the synthetic geophysical model covering a horizontal distance of 
2000 m and a depth of 1000 m for both seismic and gravimetric data. In this 
example, we modeled 100 sources equally spaced along the surface and 
recorded at 200 receivers along the surface for synthetic seismometers and 
gravimetric stations. The total record time for the seismograms is 2 s and the 
time sampling depends on the stability condition of the forward modeling. 
The source time function is a Ricker wavelet with a peak frequency of 15 
Hz. Furthermore, we add Gaussian random noise of 5 % of the standard 
deviation to the seismic and gravimetric data. 

 

	 	
(a)	 (b)	

	 	
(c)	 (d)	

	 	
(e)	 (f)	

	

 
Fig. 5. Texas-shaped velocity model II (a) and starting model (b). Velocity gradients 
using noise-free data (c) and with 5 % of noise (d). The difference in percentage is shown 
in (e). Both gradients are muted where the water layer is located. Texas-shaped velocity 
model II results using cooperative inversion with noise in the data (f ). 
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In order to measure the effect of random noise on the inversion 

procedure, we show in Fig. 5 the velocity gradients for clean and noisy data, 
as well as the difference. Comparing Figs. 5c and 5d, we conclude that the 
gradient is not significantly affected by the noise. Indeed, the difference 
between the gradients with and without noise is smaller than 0.6%, as shown 
in Fig. 5e. The results after 300 iterations are shown in Fig. 5f. Comparing 
with the true velocity model, we observe that the shape of the high-velocity 
body is recovered as well as some structural information on the layers: the 
faults are detected properly and the layers with their respective velocity 
values. The geologic traps are recovered by the algorithm, except the one 
closest to the basement. 

 
 In Fig. 6a we show the observed seismograms with noise from one of 

the stations together with the synthetic seismograms computed from the 
starting and final models. The seismogram computed from the final model 
shows a good match to the observed data in phase and amplitude, except 
between 1.1 and 1.2 s. We display in Fig. 6b the gravimetric data with noise 
between 300 and 1500 m, together with the anomaly computed from the 
initial and final models, showing a very good fit. The misfit convergence 
(Fig. 6c) shows that the seismic and gravimetric inversions converge 
monotonically, with the gravimetric part showing a faster convergence. 

 
 
Texas-shape 3D model 

 
 For this example we created a 3D model based on the structure of the 

Texas-shape model I and discretize it with a mesh of size: 𝑛! = 50,𝑛! =
50 and 𝑛! = 25 . The model consists of 4 primary structures of high velocity 
(Fig. 7a) surrounded by low-velocity layers, constant along the y-direction 
(7e). The central structure is a 3D Texas-shaped body (Fig. 7b), primarily 
concentrated at 𝑦 = 1120 m with a velocity of 3050 m/s. There are two 
other structures located approximately in the x-z plane for 𝑦 = 1800 m with 
velocities of 2500 and 2800 m/s respectively, as shown in Fig. 7c. Finally, a 
fourth object is centered at 𝑦 = 200 m with a velocity of 2900 m/s with the 
shape of a banana. The density model for this example (not shown) is 
obtained from Gardner's equation. The inversion and modelling parameter 
for this model are similar to the previous examples, however, we have 
increased the number of sources to 𝑛! = 𝑛!!×𝑛!! = 10×10 = 100 and the 
number of receivers to 𝑛! = 𝑛!!×𝑛!! = 50×50 = 2 500 equally spaced 
along the surface and we use a peak frequency of 8 Hz given the grid used. 
We perform 100 iterations of the cooperative inversion scheme using the 3D 
starting model shown in Fig. 7f. 



	

	
	

566 

	
(a)	

	
(b)	

	
(c)	

 
Fig. 6. (a) Comparison of observed (black), initial synthetic (red) and final synthetic 
traces measured at 300 m due to a source applied at 200 m on the surface for the Texas-
shaped model II. The observed data was contaminated with noise. (b) Normalized true 
(black dots), starting (red line) and final (blue line) gravimetric responses result for the 
Texas-shaped model II adding noise to the data. (c) Normalized misfit for seismic (red) 
and gravity (blue) for the Texas-shaped model II.   



	

	
	

567 

	
	

(a)	 (b)	

	 	
(c)	 (d)	

	 	
(e)	 (f)	

	

 
Fig. 7. 3D velocity model for cooperative inversion, where (a) shows the four objectives 
and (b), (c) and (d) 2D views at constant y. (e) The layered model in the x-z plane (it is 
constant in the y-direction). (f) The starting model is a smooth version of the layered 
model. 

 
 
 Similar to the previous 2D results, the method successfully recovers 

the main features of the model (Fig. 8). The shape and position of the main 
object are recovered, nevertheless, the total mass is not fully recovered 
(compare Figs. 8c and 8d). The other 3 bodies and the layered structure are 
also recovered, as shown in Figs. 8b and 8f. 

 
 The data misfits (Fig. 9) show a relatively fast convergence for the 

seismic data. The gravimetric misfit shows an increase in the first part 
because the method gives more weight to FWI, however, it exhibits good 
convergence after the 6th iteration. In the later iterations the seismic misfit 
starts showing a slow convergence whereas the gravimetric misfit shows 
further improvement. The slow convergence of FWI is due to the moderate 
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accretion of velocity and density in the Texas-shaped body and the other 
structures. 

 
 

	 	
(a)	 (b)	

	 	
(c)	 (d)	

	 	
(e)	 (f)	

	

 
Fig. 8. 3D velocity models for different y-views for the true model (left) and the 
cooperative inversion results (right). 

 
 
 The starting and final gravity residual are shown in Figs. 10a and 10b 

respectively. The starting residual is mainly due to the Texas-shape body. 
Besides that, the other objectives also contribute to the residual in their 
respective regions. The final gravimetric residual has been normalized with 
respect to the starting residual, the contour of the starting residual is 
displayed in Fig. 10b facilitate the comparison. Notice that the amplitude of 
the residual has been reduced one order of magnitude. 
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Fig. 9. Normalized misfit for seismic (red) and gravity (blue) for the 3D example. 

 
 

	 	
(a)	 (b)	

	

 
Fig. 10. Starting gravimetric residual (a) and final gravimetric residual (b) after 
cooperative inversion. Both residuals are normalized with respect to the starting residual 
and the starting contours are displayed in the final to illustrate the regions where the 
residual is reduced. 

 
 
 In order to compare the fit of the seismic data, we select three 

receivers with different source position and show the observed (black 
dashed), starting (red) and final (blue) pressures seismograms in Fig. 11. The 
three seismograms are strategically located near the different velocity 
objectives (Fig. 7a) as show in Table 2. Consistently with the convergence 
of the seismic misfit (Fig. 9), the seismograms from the final iteration match 
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the observed pressure for all receivers as shown in Fig. 11. All the events are 
matched with only minor discrepancies. Therefore, we conclude that both 
geophysical data sets are fitted with proper 3D velocity and density models. 

 
 

	
 
Fig. 11. Seismic data fit for different sources and receivers for observed pressure (black 
dashed), starting synthetic pressure (red) and final synthetic pressure (blue) after 100 
iterations of cooperative inversion. 

 
 

Table 2. Source and receiver position for the three seismograms selected to compare the 
data fit. 

 
Source Position 
𝑥, 𝑦  [𝑚] 

Receiver Position 
𝑥, 𝑦  [𝑚] 

Nearest Velocity 
Target 

(444.44, 222.22) 
(444.44, 1111.11) 
(444.44, 1777.78) 

(1020.41, 408.16)  
(1020.41, 1224.49)  
(1020.41, 1836.73) 

Figure 23d 
Figure 23b 
Figure 23c 

 
 

CONCLUSIONS 
 
 Gravimetric and Full Waveform Inversion in a cooperative scheme 
based on petrophysical relationships can be used to characterize irregular 
high velocity-density bodies embedded in a complex geology. As long as the 
starting model is acceptable and FWI has more weight in the cooperative 
inversion algorithm, both methods converge recovering, for the three 
synthetic models presented, the stratigraphic part and the top and shape of 
the deepest body. 
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 We have compared through numerical examples the proposed 
approach with conventional FWI and joint inversion. The computational cost 
of the cooperative approach is similar to that of FWI and significantly 
smaller than that of conventional joint inversion. The main reason for the 
differences in compute times is that the joint inversion requires computing 
the Fréchet derivatives, whereas FWI and the cooperative approach can be 
more efficiently implemented using the adjoint method. On the other hand, 
the cooperative approach successfully incorporates seismic and gravimetric 
data, yielding a unified model that profits from both geophysical methods. 

 
 Another important aspect of our proposed scheme is the use of the 

same grid structure in gravity and FWI. These results are promising and 
encourage us to apply the proposed cooperative scheme to the elastic case. 
We have used Gardner's petrophysical relations, however, these are not 
applicable to some lithologies of interest in exploration seismology. 
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