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The automation process of the pattern recognition for fragments of objects is a challenge to humanity.
For humans it is relatively easy to classify the fragment of some object even if it is isolated and perhaps
this identification could be more complicated if it is partially overlapped by other object. However, the
emulation of the functions of the human eye and brain by a computer is not a trivial issue. This paper
presents a pattern recognition digital system based on Fourier binary rings masks in order to classify
fragments of objects. The system is invariant to position, scale and rotation, and it is robust in the
classification of images that have noise. Moreover, it classifies images that present an occlusion or
elimination of approximately 50% of the area of the object.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Reproducing the pattern recognition human functions is a great
challenge and a very difficult task. The research community has
been invested a lot of effort to create robots and automation sys-
tems to this purpose. The introduction of the classical matched
filter (CMF) by Vander Lugt [1] in 1964 generated great interest
and progress in the pattern recognition systems by joint transform
correlators. Unfortunately, these filters are specialized to solve
specific problems, for example one filter could have an excellent
performance in the discrimination step and the signal-to-noise
ratio but a low efficiency under non-homogeneous illumination
[2–4]. Although, composite filters have been used, the problem of
rotation, scale and translation (RST) invariant correlator image
descriptor is an active field of study due to its intrinsic complexity
[5–11].

The scale invariant feature transform (SIFT) [5,6] and their
variants [7,12–14] are robust and efficient local invariant feature
descriptors for gray-level images. Local feature descriptors are
used in a variety of pattern recognition real-world applications
due to the identification efficiency of objects with moderate geo-
metric distortions or partial occlusions. However, the performance
of the local feature descriptors decays drastically when images
rza-Calderón).
have noise or non-homogeneous illumination [9,10].
Recently, pattern recognition systems based on binary rings

masks were developed [9,11,15,16]. These methodologies are ro-
bust and efficient in the gray-level images pattern recognition
regardless of the position, rotation and, in some cases, objects’
scale. Also, the response of these systems is great under non-
homogeneous illumination and noise. In Ref. [15] the invariance to
scale is achieved via the 2D non-separable scale transform. This 2D
transform is not invariant to translation, hence the center of mass
of the object is used to solve it. Based on the modulus of 2D
transform of the image a single binary rings mask is built, there-
fore 1D RST signature is obtained. To avoid the problem of calcu-
lating the center of mass of the object, this work is based on the
pattern recognition systems developed in Refs. [9,11,16], the sys-
tems utilized the amplitude spectrum of the image to obtain the
invariance to position. Also, in those works are set four approaches
to build the masks yielding four 1D RT signatures for a given im-
age. Because these systems are invariant to position and rotation
only, in the present work the invariance to scale was incorporated
by using the analytical Fourier–Mellin transform. Moreover, the
systems in [9,11,15,16] do not work with images of fragments of
objects, the pattern recognition system proposed classifies that
type of images too.

This work presents a RST invariant pattern recognition system
based on the Fourier binary rings masks methodology [16]. Using
the amplitude spectrum of the Fourier transform in order to obtain
the invariance to translation and the normalized analytic Fourier–
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Mellin transform (AFMT) [17] to achieve the invariance to scale. At
difference of the pattern recognition systems developed in Refs.
[9,11,15,16], the RST invariant pattern recognition system de-
scribed in this work classifies images that present an occlusion or
elimination of a portion of the object, moreover the Z-Fisher
transform was used to develop a 95% confidence interval for each
given image, allowing the development of a MatLab GUI (Graphical
User Interface) for the RST invariant digital image pattern re-
cognition classifier.

The rest of this work is organized as follows: Section 2 describes
the procedure to build the binary rings masks. Section 3 exposes the
methodology to obtain the signature invariant to rotation, scale and
translation based on Fourier transform, the analytic Fourier–Mellin
transform and binary rings masks. Section 4 explains the image ac-
quisition samples used in this work. Section 5 presents the manner
to obtain the classifier output planes with a confidence level at least
of 95% using the Z-Fisher transform and also the RST invariant digital
image pattern recognition classifier MatLab GUI. Section 6 presents
the analysis of the pattern recognition system efficiency when ima-
ges have noise. Section 7 exposes a comparison analysis of the pat-
tern recognition system proposed and other pattern recognition
systems. Finally, conclusions are given in Section 8.
2. The Fourier masks

The mask of a selected gray-level image ( ) = …I x y x N, , 1, , ,
= …y M1, , can be built by taking the real and imaginary parts of its

Fourier transform [16], that is, ( ( ( )))Re FT I x y, and ( ( ( )))Im FT I x y, ; for
example, the real and imaginary parts of the Fourier transform of
Fig. 1a are shown in Figs. 1b and c, respectively. Next, the image of

( ( ( )))Re FT I x y, and ( ( ( )))Im FT I x y, are filtered by the binary disk
mask ( )D x y, , defined like,

( ) =
(( ) ( )) ≤

( )
⎪

⎧⎨
⎩D x y

d c c x y n
,

1, if , , , ,

0, otherwise, 1

x y

where ( )c c,x y is the center-pixel of the image, n¼min { }c c,x y and
( )d p q, is the Euclidean-distance between p and q points, thus the
( )D x y, image is centered in the ( )c c,x y -pixel. Fig. 1d presents an ex-

ample of that binary filter ( )D x y, and the results of the filter process
are shown in Figs. 1e and f. Mathematically these operations are given
by

( ) = ( )· ( ( ( ))) ( )f x y D x y Re FT I x y, , , , 2R

( ) = ( )· ( ( ( ))) ( )f x y D x y Im FT I x y, , , . 3I

For the images ( )f x y,R and ( )f x y,I , 180 profiles of 2n-pixels length
that passes for ( )c c,x y were obtained. They are separated by θΔ = °1 ,
sampling in this manner the entire disk. Figs. 1e and f show (in black
solid line) the profile we have named the zero-degree profiles and
denoted by ( )P xR

0 and ( )P xI
0 , respectively. In general, the profile

equations are expressed like

= ( ( )) ( )θP f x y x, , 4R R

= ( ( )) ( )θP f x y x, , 5I I

where = …x n1, , , ( ) = ( − ) +y x m x x y1 1, = ( − ) ( − )m y y x x/2 1 2 1 is
the slope of y, θ θ( ) = ( + − )x y c r c r, cos , sinx y1 1 and

θ π θ π( ) = ( + ( + ) + ( + ))x y c r c r, cos , sinx y2 2 are the two distinct
end points of that line segment, r¼min { }c c,x y and θ is the angle that
y has according to the horizontal axis in the Cartesian plane (con-
sidering that the origin ( )0, 0 of the Cartesian plane is set at the
center pixel of the image ( )c c,x y ). Next, the scalars θsR and θsI that
represent the addition of the square of the intensity values in each
profile are computed, that is,

∑= ( ( ))
( )

θ θ

=

s P x ,
6

R
x

n

R
1

2

∑= ( ( ))
( )

θ θ

=

s P x ,
7

I
x

n

I
1

2

and the profile whose sum has the maximum value will be selected,
that is

α = { } ( ) = ( ) ( )β
θ

θ β

≤ ≤
S T x P xmax , ,

8R R R
0 179

α = { } ( ) = ( ) ( )γ
θ

θ γ

≤ ≤
S T x P xmax , ,

9I I I
0 179

where β and γ are the angle of the profile in ( )f x y,R and ( )f x y,I
whose sum has the maximum value, respectively. Hence, those
profiles are called the maximum energy profiles. For example, in
Figs. 1e and f the maximum energy profiles are shown (in black-
dashed line) for the real and imaginary parts of the Fourier transform
of the image Fig. 1a. Also, those profiles are given in the Cartesian
plane in Figs. 1g and h. These figures show the symmetry of ( )T xR and
the antisymmetry of ( )T xI in the vertical axis =x cx. Next, based on
the maximum energy profile obtained by Eq. (8), two binary func-
tions ( )Z xRP and ( )Z xRN are built by

( ) =
( ) >
( ) ≤ ( )

⎧⎨⎩Z x
T x

T x

1, if 0,
0, if 0, 10

RP
R

R

( ) =
( ) >
( ) ≤ ( )

⎧⎨⎩Z x
T x

T x

0, if 0,
1, if 0, 11

RN
R

R

where = …x n1, . Analogously, based on the maximum energy profile
obtained by Eq. (9), the ( )Z xIP and ( )Z xIN binary functions are con-
structed like,

( ) =
( ) >
( ) ≤ ( )

⎧⎨⎩Z x
T x

T x

1, if 0,
0, if 0, 12

IP
I

I

( ) =
( ) >
( ) ≤ ( )

⎧⎨⎩Z x
T x

T x

0, if 0,
1, if 0, 13

IN
I

I

the first sub-index in Eqs. (10)–(13) indicate if the profile comes from
the real ( )R or the imaginary ( )I part of the Fourier transform of the
image. The second sub-index means that the positives values (P) or
non-positives values (N) of the profile were taken. Finally, taking the
vertical axis =x cx as the rotation axis, the ( )Z xRP , ( )Z xRN , ( )Z xIP and

( )Z xIN functions are rotated 360° to obtain concentric cylinders of
height one, different widths and centered in ( )c c,x y pixel. Taking a
cross-section of those concentric cylinders, the binary rings masks
associated to the given image are built. Following the sub-index
notation introduced for Eqs. (10)–(13), the binary rings masks are
named ( )M x y,RP , ( )M x y,RN , ( )M x y,IP and ( )M x y,IN . Fig. 2 shows the
binary rings masks corresponding to the image in Fig. 1a.
3. The signature

The pattern recognition system uses the amplitude spectrum
( )A u v, of the Fourier transform of the image, because it is invariant



Fig. 1. (a) Image ( )I x y, . (b) Real part of the Fourier transform of ( )I x y, , that is ( ( ( )))Re FT I x y, . (c) Imaginary part of the Fourier transform of ( )I x y, , that is ( ( ( )))Im FT I x y, .
(d) Binary disk ( )D x y, . (e) ( ) = ( )· ( ( ( )))f x y D x y Re FT I x y, , ,R . The solid line shows the profile ( )P xR

0 and the dashed line the profile ( )T xR . (f) ( ) = ( )· ( ( ( )))f x y D x y Im FT I x y, , ,I . The
solid line shows the profile ( )P xI

0 and the dashed line the profile ( )T xI . (g) The maximum energy profile ( )T xR . (h) The maximum energy profile ( )T xI .

Fig. 2. (a) Mask MRP . (b) Mask MRN . (c) Mask MIP . (d) Mask MIN .
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to translation [18]. Figs. 3a and b present the image ( )I x y, and the
corresponding amplitude spectrum | ( ( )) |FT I x y, , respectively. Fig. 3c
shows a translated version of ( )I x y, , named ( )I x y,T , and Fig. 3d
exhibits the amplitude spectrum | ( ( )) |FT I x y,T . Because of
| ( ( )) | = | ( ( )) |FT I x y FT I x y, ,T , the system is invariant to translation in
an easy manner. Mathematically, it is given by



Fig. 3. (a) ( )I x y, . (b) | ( ( )) |FT I x y, . (c) ( )I x y,T . (d) | ( ( )) |FT I x y,T .
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( ) = | ( ( ))| = ( ( ( ))) + ( ( ( ))) ( )A u v FT I x y Re FT I x y Im FT I x y, , , , . 142 2

The next step is the invariance to scale, which is obtained via
the fast analytical Fourier–Mellin transform (AFMT), given by
Fig. 4. (a) Image ( )I x y, . (b) ( )A u v, . (c) θ( )ρA e , . (d) ω( )S k, . (e) B
∫ ∫ ( )ω θ
π

θ θ ρ( ) = { ( )} = ( )ρ
π

ρ ρσ θ ρω
−∞

∞
− ( + )

15M k A e A e e e d d, ,
1

2
, ,i k

0

2

where ρ¼ ln ( )r and σ > 0. Fig. 4c shows ( )A u v, in log-polar co-
ordinates as it is required in Eq. (15), however this equation is not
invariant to scale, but normalizing the AFMT by its value in the
inary mask MRP . (f) ( )H x y,RP . (g) Signature of image ( )I x y, .



Fig. 5. Example of the numbering process of the rings in a binary mask.
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Fig. 6. The four signatures of Fig. 4a.
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center-pixel, the amplitude spectrum is invariant to scale [17], that
is

ω ω( ) = ( )
( ) ( )

S k
M k
M c c

,
,
,

,
16x y

where ( )c c,x y is the central pixel of the image ω( )M k, . The next
step is to filter the ω( )S k, amplitude spectrum (Fig. 4d) of the
image (Fig. 4a) by a binary ring mask, for example ( )M x y,RP

(Fig. 4e) as

= ( )H M So , 17RP RP

where ○ means an element-wise product or Hadamard product
[19]. The results of Eq. (17) are presented in Fig. 4f.

The rings in ( )H x y,RP are enumerated from inside to outside to
obtain the following set,

( )θ θ= {( ) = + = − ≤ ≤ }− 18ring x y x c r y c r r r r, : cos , sin ; ,k x x k k2 1 2

where ri is the distance from the center to the ith ring. Fig. 5 shows
how the rings are numbered to form the set in Eq. (18). The band
lying between r1 and r2 is taken as the first ring, the second ring is
set between r3 and r4, and successively, therefore the band that lies
between −r k2 1 and r2k is named the kth ring. After that, the addition
of the intensity values in each ring of ( )H x y,RP are computed to
build the function

∑( ) = ( ) ( ) ∈ ( )signature index H x y H x y ring, , if , , 19RP RP index

where = …index m1, and m represents the number of rings in HRP .
Fig. 4g shows the signature constructed by the binary rings mask
MRP , to follow the nomenclature introduced to call the masks, it is
named SRP . Analogously, SRN , SIP and SIN are obtained using MRN , MIP

and MIN , respectively. Fig. 6 presents the four signatures of the
image in Fig. 4a.
4. Image acquisition

To test the system, this work uses a database of 18 gray-level
digital images of fossil diatoms (Fig. 7). Those images were se-
lected because of the similarity in their morphologies. The samples
were collected in 1996 by an oceanographic survey in La Cuenca
San Lázaro, Baja California Sur, México [20]. To generate a database
of problem images of fragments of objects, each diatom in Fig. 7
was fragmented by hand to obtain 49 images of each diatom with
different percentages of missing data: from 1% to 99%. For ex-
ample, Fig. 8 shows the gray-level digital images for Actinocyclus
ingens-Rattray diatom.
5. Classification

The pattern recognition system works comparing the sig-
natures of the image to be classified (problem image) with the
signatures of each reference images in the database
β = { = … ∈ }R j k k: 1, , ;R j . In this work βR are the diatom ima-
ges in Fig. 7 and the four signatures SR

RP
j
, SR

RN
j
, SR

IP
j
and SR

IN
j
are

obtained to each Rj image. After that, the signature S̄Rj is calculated
like

S
-
Rj=S

RP
Rj ○SRNRj ○SIPRj○SINRj , (20)

to be processed as

^ = ( ( ¯ )) ( )S Re FT S . 21R Rj j

The final step is to determine the feature that will characterize
the pattern in the target image Rj. This is calculated by applying
Pearson's correlation coefficient [21],

{ }
σ

=
| (^ )|

( − )
( )^

r
C S

N

max

1
,

22
R

L R

S
2j

j

Rj

where N is the cardinality of the domain of ŜRj and σ ŜRj
is the

standard deviation of the signature. CL represents the linear cor-
relation of two given signatures S1 and S2, that is

{ }( ) = | ( )| | ( )| ( )ϕ φ− −C S S FT FT S e FT S e, , 23L
i i

1 2
1

2 1

where φ and ϕ are the phases of the Fourier transform of the
signatures S1 and S2, respectively. The notation ( )C SL 1 indicates the
autocorrelation function. Analogously, the feature that will char-
acterize the pattern in the problem image P is set by

{ }
σ σ

=
| (^ ^ )|

( − )
( )^ ^

r
C S S

N

max ,

1
,

24
P

L R P

S S

j

Rj P

where ŜP is the signature of the problem image and σ ŜP
is the

standard deviation of that signature. If rP is similar to rRj, then P
and Rj are the same, otherwise they are different.

In order that the pattern recognition digital system also classifies
images with fragments of objects, the system was trained using 50
images with different percentages of missing data, for example the
diatoms Actinocyclus ingens-Rattray in Fig. 8. Then, their corre-
sponding Pearson's correlation coefficients rR

k
j
, = …k 0, , 49, were



Fig. 7. Data base of 18 diatoms: (a) Actinocyclus ingens - Rattray. (b) Azpeitia sp. (c) Azpeitia nodulifera - (Schmidth) Fryxell et Sims. (d) Actinocyclus ellipticus - Grunow in van
Heurck. (e) Actinocyclus ellipticus var moronensis - (Deby ex Rattray) Kolbe. (f) Nitzchia praereinholdii - Schrader. (g) Thalassiosira oestruppii var 1. (h) Thalassiosira oestruppii var
2. (i) Thalassiosira domifacta - (Hendey) Jouse. (j) Asteromphalus imbricatus - Wallich. (k) Pseudotriceratium cinnamomeum - (Greville) Grunow. (l) Thalassiosira kozlovii -
Makarova. (m) Coscinodiscus radiatus - Ehrenberg. (n) Diploneis bombus - Cleve-Euler in Backman et Cleve-Euler. (o) Stephanodiscus sp. (p) Actinoptychus undulatus - (Bailey) Ralf.
(q) Actinoptychus bipunctatus - Lohman. (r) Actinoptychus splendens - (Shadbolt) Ralf ex Pritchard.
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obtained. Because { = … }r k, 0, , 49R
k

j
does not have a normal dis-

tribution, those values are normalized by the Z-Fisher transform to
get the confidence interval for the correlation values [21]. The
Z-Fisher value for rR

k
j
is given by

=
+

− ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Z

r

r
1.1513 ln

1

1
.

25
r

R
k

R
kRj

k
j

j

Thus, the 95% confidence interval for Z
rRj

k is

σ σ= − +
( )

+−
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Z Z Z Z, 1.96 , 1.96 ,

26r r r Z r Z
Rj
k

Rj
k Rj

k
Rj
k

with a standard deviation of σ = −n1/ 3Z and n¼50 the size of
the sample. Hence, the confidence interval for the correlation
coefficient ρ

r
Rj

k is

ρ ρ ρ≤ ≤
( )

− + ,
27r r rRj

k
Rj
k

Rj

k

where

ρ ρ=

−

+

=

−

+
( )

−

−

−

+

+

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Z

Z

Z

Z

exp 2 1

exp 2 1

,

exp 2 1

exp 2 1

.

28

r

r

r

r

r

r

Rj

k

Rj

k

Rj

k

Rj

k

Rj

k

Rj

k

For each Rj there are 50 values of ρ −
rRj

k and another 50 values for

ρ +
rRj

k then the confidence interval of 95% to decide if a problem

image and Rj are the same is given by
ρ ρ
( )≤ ≤

−
≤ ≤

+
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎡

⎣
⎢
⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎤

⎦
⎥
⎥min , max .

29
k r k r0 49 0 49Rj

k
Rj

k

The problem image database has 900 samples of real fragments
of diatoms. Table 1 resumes the results obtained by the Fourier
pattern recognition system, the column Diat. indicates the diatom
fossil type, the column M.P. points the minimum percentage (M.P.)
of the area of the object that is required to its classification with a
confidence level at least of 95% and the column Image shows the
corresponding image with the minimum percentage. Table 1 in-
dicates that the system is robust and properly classifies images
that present an occlusion or elimination until 49% of the area of
the object. Moreover, the Z-Fisher methodology allows to assign a
95% confidence interval to each problem image, thus the auto-
mation of the classification step could be done. A MatLab GUI
(Graphical User Interface) was developed for the Fourier pattern
recognition system described in this work. In the GUI example of
Fig. 9, the problem image (PI) is a fragment of the reference image
(RI), however the signatures of both images are quite similar (left-
bottom part of the GUI), hence the confidence interval of the PI is
contained into the confidence interval of the reference image
(right-bottom part of the GUI), indicating that the problem image
is equal to the reference image.
6. Noise analysis

To test the performance of the Fourier pattern recognition
system, the discrimination coefficient DC [4] was used and it is
defined as



Fig. 8. Problem images of Actinocyclus ingens-Rattray diatom.
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= − | ( )|
( ( )) ( )

DC
C S S
Q

1
max ,

0
,

30
L T N

2

2

where = | ( )|Q C S S,L T TN and S S,T TN and SN are the signatures of the
target, the target with noise and the background image with noise,
respectively. For the sake of comparison, the performance of the
SURF methodology is included, but here the results are given in
terms of the repeatability parameter r,

= ( )
( ) ( )

r
C T P

mean N N
,

,
,

31T P

where ( )C T P, represents the number of the common detected
points in the reference image T and the problem image P; NT and
NP are the number of points detected in T and P, respectively [22].

Fig. 10 presents the graphs of the mean of the DC response for
the Fourier pattern recognition system and the repeatability ana-
lysis (r values) for the SURF algorithm, the images were altered
with additive Gaussian noise of media zero and variance from zero
to 1, using 50 images per sample. In Fig. 10 is shown that the
Fourier system has better response than the SURF methodology.
The same analysis was done using salt and pepper noise, obtaining
the same result as the additive Gaussian noise, Fig. 11.
7. Discussions

In this work a pattern recognition digital system that is in-
variant to translation, scale and rotation is presented. The system
accepts an scale range until 710% with respect to the reference
image. Also, the system showed to be robust to classify images



Table 1
Minimum percentage fragment required.

Diat. M.P. Image Diat. M.P. Image Dia. M.P. Image

a 48% g 48% m 34%

b 22% h 39% n 37%

c 25% i 39% o 34%

d 27% j 39% p 32%

e 29% k 47% q 25%

f 44% l 39% r 49%
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with Gaussian and salt and pepper noises. Moreover, it classifies
images even if they contain fragments up to 49% of the area of the
object.

Other technique based on 1D RST invariant signatures is pre-
sented in [10]. This methodology, called vectorial signatures, uses
the non-linear correlation function (with k¼0.3) to compare the
Fig. 9. MatLab GUI of the Fourier
signatures. The vectorial signatures system was tested with the
reference image database in Fig. 7, showing an excellent perfor-
mance to classify images until 720% in the scale range. For ex-
ample, Fig. 12a presents one of the eighteen output planes gen-
erated by the system, there the reference image is diatom Acti-
nocyclus ingens-Rattray. Fig. 12b exhibits an amplification zone
pattern recognition system.
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Fig. 10. Pattern recognition systems performance when images have additive Gaussian noise.
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Fig. 11. Pattern recognition systems performance when images have salt and pepper noise.
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around h and j diatoms' boxes to show that none of the boxes are
overlapped. The same results were obtained with the other se-
venteen reference images in the database, therefore the system
has a confidence level at least of 95.4%. However, when this system
was tested using the images with the fragments of diatoms (for
example Fig. 8), it could not classify the diatoms that missed more
than 10% of the diatom's area. Fig. 13 shows the output plane for
the reference image j and problem images with diatoms without
until 10% of the area. It is observed that the boxes for diatoms c, i
and p are overlapped and the boxes corresponding to diatoms b
and j overlap too. Hence, the vectorial signatures system does not
work with images that have a fragment of the object.

On the other hand, the SURF methodology does not work
properly when the image was rotated. Fig. 14 shows the repeat-
ability responses of this system (the parameter r given in Eq. (31)).
The diatom image named a in Fig. 7 and their 360 rotated version
(the image was rotated degree by degree until complete the circle)
were used for this test. Fig. 14 exhibits that at a very low rotation
angle, the system efficiency decays notoriously because of the
presence of the sawtooth noise that affects the system perfor-
mance drastically. Also, it shows a periodic behavior of 90°; when
the image was rotated 45° the system has the lowest performance
since the sawtooth noise is greater. On the contrary, at rotation
angles near 90° the parameter r tends to 1, because the images
have lesser noise effect. The pattern recognition system invariant
to position, scale and rotation proposed in this work classifies that
kind of noisy images with a confidence level at least of 95%,
therefore it is showed to be robust in the classification of images
with sawtooth noise also. Although the system is specialized to
work with gray-level digital images that have just one object, this
is not a limitation because if the image has more than one object, a
preprocessing technique could be used to split it in several images
that contains just one object per image. Currently, the authors are
working to extend the applicability of this system to color images.
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8. Conclusions

The pattern recognition system invariant to translation, scale
and rotation proposed in this work shows an excellent perfor-
mance, a confidence level at least of 95%, in the classification of
gray-level images even if they contain fragments up to 49% of the
area of the object. This pattern recognition system is based on the
Fourier binary rings mask methodology invariant to translation
and rotation, which is robust and efficient under Gaussian, salt and
pepper, sawtooth noises, non-homogeneous illumination. In this
work, the invariance to scale was introduced in the system via the
analytical Fourier–Mellin transform, obtaining a scale range of
710%. Also, the use of the Z-Fisher statistical methodology allows
us to assign a 95% confidence level to each image, yielding the
automation of the classification step. Therefore, a MatLab GUI was
developed to automate the classification of digital images with a
fragment of the object. The methodology proposed in this work
was compared with SURF technique and the 1D vectorial sig-
natures methodology in [10]. The vectorial signatures system does
not classifies images with fragments of objects and the SURF
system does not work properly with images that have few saw-
tooth noise. Although, the sawtooth noise were introduced by ro-
tating the images, this kind of noise is presented in low resolution
images too. Hence, the pattern recognition system based on binary
rings masks is an excellent option to be used in the classification of
gray-level digital images with one object. If the image has more
than one object, a segmentation technique should be used to split
the image in several images containing one object.
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