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Abstract

This paper presents a new system for pattern recognition in digital images, called Fractional Fourier-Radial Transform, invariant
to translation, scale and rotation (TSR invariant) taking advantage of the well-known properties of some integral transform as
Fourier Transform, Mellin Transform and the Radial Hilbert Transform. The main contribution of this work is the use of the
Fractional Fourier Transform to avoid, or reduce the overlap between results due to the optimal order selection for each reference
image, assuming « = 3 for computing optimization, which helps to get a higher difference between the reference images
spectrum. This system was tested using different species of phytoplankton obtaining a level of confidence of at least 92.68%
invariant to position, size, and rotation, supporting scale variations of +20%. The mean of the highest confidence values for the
scale variation correlations is 98.47%, for rotation variation correlations is 100%, and for the rotation and scale variation
correlations is 98.15%. The testing dataset images are selected due to their morphology complexity; they have a real pattern to

be recognized instead of using a test-book data set.
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1 Introduction

Since the introduction of the classical matched filter by Van
der Lugt in 1964 [1], the pattern recognition has become a
fundamental part of the industrial and health sectors, which
makes it one of the main fields in image processing research.

The objective is to identify patterns in digital images, for
this, different techniques have been developed depending on
the characteristics of the pictures as those acquired by
Guerrero-Moreno and Alvarez-Borrego in 2009 [2] where
they used a nonlinear composite filter, the results produced
by Lerma-Aragon and Alvarez-Borrego in 2009 [3] where
they designed a methodology to get Translation, Scale and
Rotation (TRS) invariant vectorial signatures; and many
others [4—11], but there are still some complications, such as
the TRS invariant recognition of objects using a single target
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image (not composite filters) and the increase of the scale
range with high effectiveness.

Using the module of the Fourier Transform, which is in-
variant to translation [12], then performing the Mellin trans-
form to generate the invariance to scale [13] and finally ap-
plying the fractional Fourier-radial transform, proposed in this
work to create the rotation invariance, four signatures TSR
invariant are generated. The fractional Fourier-radial trans-
form proposed in this work is based on the works developed
about the Hilbert transform, such as its optical implementation
developed by Lohmann et al. [14], the spatial filtering to ob-
tain the isotropic Hilbert transform developed by Ojeda-
Castafieda and Jara [15] and particularly the Hilbert radial
transform developed by Alcaraz [16] where an invariant rota-
tion methodology for image recognition is developed.

The main contribution of this Fractional Fourier-Radial
Transform is to avoid, or reduce, the overlap between results
due to the optimal order selection for each reference image.
This methodology has been designed to create a more signif-
icant difference between different images because each image
has its optimal order of fractional Fourier-radial transform.
This work takes advantage of these integral transforms to de-
sign a new technique (explained below) to improve the results
about time and handling for a user, the use of only one refer-
ence image is necessary.

One of the most used methods for comparing data is the
correlation [17-22], due to its easy implementation in the
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plane of frequencies. In this work, a classical correlation, nor-
malized by the Pearson coefficient [23], is used to compare the
signatures of the images.

The size of the images in the dataset is 320 x 320. But when
generating translation, scale and rotation invariance of a mod-
el, four-vectors of 26 lengths are calculated with the vital
information of the original image, and they are compared,
these are called signatures. In this way, 26 elements are used
instead of 102,400, which means an advantage of computing
time during the performance of correlation. This is also a great
advantage over storage because once the 26 elements have
been obtained, it is not necessary to keep the 102,400 and it
will only store 26 elements per image.

The rest of the paper is organized as follows. In Section 2,
the definition of Mellin Transform, Fractional Fourier
Transform, and Fractional Fourier-Radial Transform is pre-
sented. The methodology is written in Section 3. Computer
simulations and results are presented in Section 4, and in
Section 5 conclusion are given. This work improves the re-
sults on the user’s time of implementation. So, identifying
objects in digital images using a single reference image re-
gardless of the position, scale, or rotation and use the fraction-
al Fourier transform to increase the degree of freedom and
manipulation of the methodology.

2 Mathematical Basis
2.1 Mellin Transform

The two dimensional Mellin transform [24, 25] is defined by

Fuls,) = MU} = [y sy, (1)

where s and 7 are the variables of the coordinate system in the
Mellin space.

When calculating the Mellin transform of a scaled function
by a factor \, F'y, (s, ¢) = M{f(\x, \y)}, we can conclude (2)

[Fa(s,0)] = [Fay(s, )] (2)

In this way, the module of the Mellin Transform is invariant to
scale. If we calculate the module of the Fourier Transform of an
image, to take advantage of its translation invariance, and then
calculate the module of the Mellin Transform from the previous
result, we obtain an image invariant to translation and scale.

2.2 Fractional Fourier Transform
The fractional Fourier transform is an integral transform

[26-32], which is interpreted as a generalized form of
the conventional Fourier transform, where the physical
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meaning of this fractional Fourier transform is the elec-
tric field distribution that describes the different diffrac-
tion patterns along the propagation of the wavefront of
an electromagnetic wave.

The expression for the two dimensional fractional Fourier
transform is

Fap(u,v) = 7 {f(x,)}
= 7J;O wa(x,y)Kaﬂ(x,y, u, v)dxdy, (3)

where the kernel is defined by

Ko p(x,y,u,v) = \/1-icotdp, exp [iw(xz + uz)cotd>a—i27ruxcscd)a} X 4
4/ 1=icotd zexp [i7r (y2 + vz)cot(bﬂ*i27rvycscd)a]7 ( )

where ¢, and ¢ are the rotation angles in the plane space-

spatial frequency for each coordinate and are given by
™

d)u :aga q)ﬂ:ﬁ_

: (5)

where « and [ are the orders of the fractional Fourier trans-
form in x and y directions respectively.

2.3 Fractional Fourier-Radial Transform

The radial Hilbert transform [16, 33-35] is defined by
T A{HRI (e, )]} = P F(u, v), (6)

where p is the order of the radial Hilbert transform,

6 = arccos (%), with » = Vu? +2 for (u, v) # (0, 0) and
F(u, v) is the Fourier transform of the function f(x, y).
Since e”’ takes complex values it can be expressed by

" = H(u,v) = Re[H (u,v)] + i Im[H (u,v)], (7)

where Re[H] = sin(pf), Im[H] = cos(pf#) and using the next
conditions

Re[H (u,v)] = { 1() f%r SISI:IEP(%)Z(?’
: (8)

1 for 0 0

Im[H (u, v)] = { 0 fﬁ)r Cfss(fpe))zo

it is possible to show the real and imaginary parts of function
H(u, v) (Fig. 1).

Filtering the frequencies of Re[H] and Im[H] using a binary
disk D the masks Hz = Re[H] - D and H; = Im[H] - D are
generated. Figure 2 shows the binary disk D and the masks Hy
and H[.

Finally, two vectors can be obtained, where the num-
ber of elements of each signature is equal to the num-
bers of rings in each mask and the value of each
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Figure 1 a Real part, Re[H], of
order p = 1. b Imaginary part,
Im[H], of order p = 1.

7

component is similar to the sum of the pixel values
contained in each ring after the multiplication of the
Fourier transform, F(u, v), by each mask [16].

This work proposes a fractional Fourier-radial transform
where the Fourier transform F(u, v) in the Eq. (6) is replaced
by the fractional Fourier transform F, s(u, v). Thus,

TN Hplf (5,9)]} = & Fas(u,v), ®)

in this way you have an additional parameter to manipulate, the
order of the fractional Fourier transform (« and /3). Each signa-
ture will have an optimal order for each image, not necessarily

the same as the other image’s signatures, and this ve heltpful for
differentiating the results of the pictures that are different.

3 Methodology

3.1 Generation of Signatures Sk s, S;_s,, Sk_u, and
N

Taking an image and calculating the module of the Fourier-
Mellin transform, a new representative picture of the original

Figure 2 a Binary disk. b Hy
Mask. ¢ H; Mask.

\\7/ -
\

image is generated with the advantage that this new image is
invariant to the position and scale of the original.

The Fractional Fourier Transform is calculated the fraction-
al Fourier transform of order «v, 3 (o = 3 in this work) and has
its real and imaginary part. These are multiplied independently
by each one of the masks shown in Fig. 2, and the pixel values
of each resulting ring summed. In this way, we get rotation
invariance, with the information given by the rings, regardless
of the angle of rotation that the object presents. This invari-
ance is because of modules of Fourier and Fourier-Mellin
transform preserves the image rotation.

For producing signatures, every value summed in the ring
is ordered according to a particular number of rings.
Signatures are invariant to translation, scale, and rotation. Its
maximum value will normalize these signatures. Figure 3
shows a diagram of the methodology explained above.

In this way, it is possible to generate equal signatures for the
same object regardless of position, scale, and rotation. Figure 4
shows a representative diagram to obtain the same four signatures
Sr_tizs Si_tig> Sr_p, and Sy_g, for different images that contain
the same object with different scale, position, and rotation.

(a) (b)

@ Springer



J Sign Process Syst

Figure 3 Methodology for the
generation of the signatures
Sr_ty> S1_t1z> Sk, and S7_p,
TSR invariants.

Module of the Fourier-Mellin
transform
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3.2 Signatures Correlations

Considering two images: the target and a problem image, it is
natural to say: if the problem image is equal to the target, their
signatures will be the same. While if the image to be recog-
nized is different from the reference image; its signatures will
not be equal. In a correlation between two signatures, it is
expected that the maximum possible value is when the

Figure 4 Signatures Sg_,,,

Signature Sr_

signatures are identical and when the signatures are different
smaller values are anticipated. Therefore, the correlation func-
tion is a proper metric to determine if the image to be identi-
fied is equal to the reference image or if they are different. This
methodology is in the diagram presented in Fig. 5.

Before performing the correlation, the values of each sig-
nature are subtracted by the average of its signature. Then
correlation values C(Sr_p,(RI), Sr_p, (1)),

Signature St me

S[J.[R, SRJ—[I and S]J.[, TSR 1

invariants. 2 2
(0] (0]
= s
£ £0.5
> >
2 24
[} [}
= [ =
L L

0 : : : 0 : :
1 6 11 16 21 26 1 6 11 16 21 26
Number of ring Number of ring
Signature Sr Signature Si
o | ‘ ‘ ‘ o) '
£ £
[} [0}
=} s
£ ‘ £05
> >
< 2
[} [}
[ = c
L I
0 : 0 : :
1 6 11 16 21 26 1 6 11 16 21 26

Number of ring

@ Springer

Number of ring



J Sign Process Syst

Figure 5 Signatures correlation
methodology. RI: Reference

Reference image

image. II: Image to identify. l l l l
Signature || Signature || Signature | | Signature
SR_He (RI) St_He(RI) SR i (RI) S1_m(R1)
Correlation | } C (Sr_m (1), Sr_m (1) ‘
mm C (SIJIN(RI) . SL”R("))
\C—Om%L T € (Srom@®y, SkLam)
I@‘_) C (SLH,(RI),SL.(II))
Signature || Signature | | Signature | | Signature
SR_Hx (11) St (10) SR (1) St

f

f I I

Image to identify

Species 1 Species 3

Species 7 Species 9

Species 14

Species 20 Species 21

\I‘V\'

Species 25 Species 26 Species 27

Figure 6 Phytoplankton species used in this analysis: 1 —
Acanthogonyaulax spinifera, 2 — Ceratium gravidum, 3 Dinophysis
hastata, 4 — Diplosalopsis orbicularis, 5 — Histioneis, 6 —
Lingolodinium polyedrum, 7 — Ornithocercu armata, 8 — Ornithocercus
magnificus, 9 — Oxytoxum scolapax, 10 — Podolampas bipes 1, 11 —
Podolampas spinifer 1, 12 — Podolampas bipes 2, 13 — Podolampas
palmipes, 14 — Podolampa spinifer 2, 15 — Protoperidinium, 16 —

Species 5

é

/

Species 6

@

Species 12

Species 11

(Y

L

Species 17 Species 18

Species 22 Species 23 Species 24

Species 28 Species 29 Species 30

Dinophysis rapa, 17 — Dinophysis hastate, 18 — Ceratocorys horrida 1,
19 — Ceratocorys horrida 2, 20 — Ceratium furca, 21 — Ceratium lunula,
22 — Ceratium hexacatum, 23 — Ceratium praelongum, 24 — Ceratium
breve, 25 — Asterolampra marylandica, 26 — Hemidiscus cuneiformis, 277
— Thalassionema nitzschioides, 28 — Pyrocystis, 29 — Hemidiscus, and 30
— Dinoflagellata.
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C(SI_HR(R[>7SI_HR(I[)), C(SR_H[<R[),SR_H[<][)) and C
(S7_, (RI),S;_p,(I)) are calculated using the Egs. (10),
(11), (12) and (13) respectively.

C(SR_HR (R1)7 SR—HR (11))

B [ cov(Sr_s, (RI), Sg_s, (1))
— St (Sp_, (RD)) x std (S, (11))] (10)

C(S1_m, (RI), St _m, (1))

:max_ COV(S[_HR(RI),SI_HR(I[)) :| (11)
Lstd (S _11,(RI)) % std (S _1, (1))

C(Sr,(RI), Sg_n, (1))

- [ COV(SRJ_[I (RI),SRJ.II ([]))
— S (Sp_m, (RD)) % std(Sg_s, (11))} (12)

C(SI_H/ (RI)7 SI_H/ (I]))

B [ cov(Si_u, (RI),S;_u, (1))
— (S, (RD) % std(Sy, (11))} (13)

As you can see in Egs. (10-13), the numerator is the co-
variance of the signatures and the denominator is the multipli-
cation of the standard deviations of the signatures.

3.3 Optimal Order Selection for each Reference Image

The optimal order is that of the fractional Fourier transform
that generates the highest autocorrelation value for each refer-
ence image. Autocorrelations will be made for the four signa-
tures from the spatial plane (o = 3 = 0) to the plane of fre-
quencies (a = 4= 1) with increments of 0.01, to determine this
value for each reference image. If we continue advancing after
the plane of frequencies, we will be returning to the inverted
spatial plane. An appraisal will be obtained for each autocor-
relation. The order of the fractional Fourier transform with the
highest correlation value will be the optimal order, so an op-
timal order corresponds to each signature of the reference
image. This step is crucial in this methodology because each
signature of each image will have its optimal order. Then the
fractional Fourier-radial transform will be different for each
signature of each image, which generates a more significant
differentiation between the signatures of different pictures.

4 Computer Simulations
First, the next 30 images of different phytoplankton species
were selected for the test of the algorithm (Fig. 6). These

images were chosen due to the similarity and complexity be-
tween them to test the effectiveness of this methodology.
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Then, the optimal order for the four signatures of each
image was calculated, Table 1 shows those optimal orders.
In Table 1, you can see that for some species, the optimal
order is equal to one; that is, the fractional Fourier transform
becomes the conventional Fourier transform of each image.

Each image is resized from 80% to 120% in 5% intervals;
nine images are obtained for each image, which gives a total
of'270 copies (Fig. 7 shows an example for species 1). Taking
as a reference each of the pictures without scaling (100%
scale) and making correlations in their optimal order using
Egs. (10-13), Table 2 is obtained.

Table1  Optimal order for the fractional Fourier-radial transform for the
four signatures.

Optimal order for the fractional Fourier-radial transform

Image Signatures
Sr_tip S1_ty Sr_n, N

1 0.99 0.89 1.00 0.78
2 0.90 0.88 0.87 0.90
3 0.99 0.87 0.99 0.77
4 0.99 0.83 0.99 0.78
5 0.99 0.88 0.99 0.89
6 0.82 0.72 1.00 0.77
7 0.75 0.82 1.00 0.78
8 0.99 0.88 0.99 0.89
9 0.90 0.88 0.87 0.90
10 0.99 0.88 0.99 0.89
11 091 0.88 0.87 1.00
12 0.99 0.87 0.99 0.90
13 0.90 0.88 0.87 1.00
14 091 1.00 0.92 1.00
15 0.99 0.87 0.99 1.00
16 0.99 0.89 1.00 0.78
17 0.99 0.87 0.99 0.77
18 0.99 0.89 0.99 0.78
19 0.99 0.88 0.99 0.90
20 091 1.00 0.92 1.00
21 0.99 0.88 0.99 0.90
22 0.99 0.88 0.87 0.90
23 0.90 1.00 0.87 0.90
24 0.99 0.88 0.99 0.89
25 0.82 0.88 0.77 0.89
26 0.99 0.88 0.99 0.89
27 091 0.88 0.87 1.00
28 0.90 0.88 0.87 0.90
29 0.75 0.88 0.77 0.78
30 0.99 0.88 0.99 0.90

The black values mark the order of the conventional radial Hilbert
transform



J Sign Process Syst

110%

115% 120%

Figure 7 Phytoplankton species 1, scaled from 80% to 120% in 5%
intervals.

You will notice that where the optimal order is equal to
one, low confidence values were obtained compared with
the rest of them and we will not consider these cases because
the module of the Fourier-Mellin Transform moves us to the
plane of frequencies and then when calculating the Fractional
Fourier Transform in the order equal to one we move to the
spatial plane, losing the information of the frequencies of the
image. When the optimal order of a signature is similar to one,
this signature will be useless, but we will still have the other
signatures to identify the images we will only select the sig-
nature with the highest confidence level for each picture.

Figures 8,9, 10, 11, 13, 14, 15, 16, 17, 18, 19 and 20 show
an overlap of the box of the target species with some other
boxes. Some values of correlation of species that we know are
not the target were higher than the minimum amount of asso-
ciation of the target species. These values mean that our sys-
tem mistakenly detects some other species. Analyzing the
values that exceed the minimum correlation value of the target
species versus the correlation values of all species, excluding
the target species, the confidence level of this methodology
can be calculated. This relationship is given by Eq. (14).

Confidence = 100% % (1é>7 (14)

T

where § is the number of correlations values that exceed the
minimum correlation value of the target species (but are not
from the target species) and 7 number of correlation values of
all species excluding the target species.

The boxplots shown in Figures 8, 9, 10, 11, 13, 14, 15, 16,
17, 18, 19 and 20 are centred in the mean and show the ex-
treme values (empty boxes) and + 2 standard errors (filled
boxes). All the information is in the height of the boxes, the
width is meaningless.

Each image was rotated in five degrees intervals, 72 images
were obtained for each one, this gives a total of 2160 copies
(Fig. 12 shows an example for species 1). Taking as a refer-
ence each of the images without rotating and making correla-
tions in their optimal order, Table 3 is obtained. On Table 3,
almost all the confidence values were 100%. We see shallow

Table 2 Correlations confidence for scale variation for the four
signatures of each image.

Confidence of correlations for scale variation (%)

Image Signatures

Sr_t, NS Sr_H, N
1 95.40 96.93 96.55 97.32
2 95.40 95.40 95.40 95.40
3 92.34 98.08 92.72 99.23
4 82.38 97.70 85.44 99.23
5 91.57 92.72 92.34 93.49
6 97.70 98.47 96.55 100.00
7 97.70 96.55 95.79 96.55
8 90.04 94.64 90.04 95.02
9 96.17 96.55 96.55 97.32
10 96.93 100.00 96.93 100.00
11 100.00 100.00 100.00 17.24
12 94.25 91.19 94.25 93.87
13 100.00 100.00 100.00 3.83
14 100.00 6.51 99.23 7.66
15 97.70 96.93 97.70 27.59
16 94.64 96.93 96.93 96.55
17 97.70 98.08 97.70 98.08
18 98.85 100.00 98.85 100.00
19 100.00 100.00 100.00 100.00
20 100.00 4.98 99.62 3.07
21 100.00 100.00 100.00 100.00
22 98.47 100.00 100.00 99.62
23 96.55 3.07 96.93 97.32
24 95.40 98.85 95.79 99.23
25 97.32 95.79 96.17 95.40
26 96.55 100.00 96.55 100.00
27 100.00 100.00 100.00 69.73
28 98.47 95.79 98.47 97.32
29 100.00 98.85 100.00 100.00
30 97.32 100.00 98.08 100.00

The black values mark the highest confidence for each image
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Figure 8 Results using the
signatures Sp_g, for correlations
with scale variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.

Figure 9 Results using the
signatures Sg_g, for correlations
with scale variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.
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Figure 10 Results using the
signatures S; 47, for correlations
with scale variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.

Figure 11 Results using the
signatures S7_g, for correlations
with scale variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.
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30 degrees

50 degrees 55 degrees 65 degrees

75 degrees 80 degrees 85 degrees 355 degrees

Figure 12 Phytoplankton species 1, rotated from 0 to 355 degrees in 5 degrees intervals.

Figure 13 Results using the Using signatures S,
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Figure 14 Results using the
signatures Sp_, for correlations
with rotation variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.

Figure 15 Results using the
signatures S;_g, for correlations
with rotation variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.
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Figure 16 Results using the
signatures S;_y, for correlations
with rotation variation using the
species 1 as the target. (Above) all
correlation boxes. (Below) zoom
in the interest zone to show the
overlap.

Figure 17 Results using the
signatures Sg_g, for correlations
with rotation and scale variation
using the species | as the target.
(Above) all correlation boxes.
(Below) zoom in the interest zone
to show the overlap.
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Figure 18 Results using the
signatures Sp_, for correlations
with rotation and scale variation
using the species 1 as the target.
(Above) all correlation boxes.
(Below) zoom in the interest zone
to show the overlap.

Figure 19 Results using the
signatures S;_g, for correlations
with rotation and scale variation
using the species | as the target.
(Above) all correlation boxes.
(Below) zoom in the interest zone
to show the overlap.
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Figure 20 Results using the

Using signatures Su:,

signatures S;_y, for correlations
with rotation and scale variation
using the species 1 as the target.
(Above) all correlation boxes.
(Below) zoom in the interest zone
to show the overlap.
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confidence values where the optimal orders are equal to one,
but above, we explained why we would not consider these
values. The Figs. 8, 9, 10 and 11 show the results using the
four signatures for correlations with scale variation using the
species one as the target and Figs. 13, 14, 15 and 16 show the
results for rotation variation.

Each image was rotated in intervals of 5 degrees, 72 copies
are obtained for each image, by scaling these 72 images from
80% to 120% in 5% intervals, a total of 19,440 images are
generated. Taking as a reference each one of the images with-
out rotating or scaling and making correlations in their optimal
order, Table 4 is obtained, and again you can see shallow
confidence values where the optimal order was equal to one,
but we previously explained why we would not consider said
values. The Figs. 17, 18, 19 and 20 show the results using the
four signatures for correlations with rotation and scale varia-
tion using the species one as the target.

All calculations shown above were developed on a
MacBook Pro computer with 2.5 GHz Intel Core i5 and
4 GB 1600 MHz DDR3 RAM.

These techniques for pattern recognition invariant to posi-
tion, scale and rotation have been of great interest to the sci-
entific community focused on image processing. In 1989 Reid
developed an invariant technique to the position, scale and
rotation for the recognition of patterns with an accuracy of
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100% however in this work only the letters C and T were used
with their different transformations [36]. Later in 1992
Spirkovska and Reid developed a new technique using neural
networks reaching the 100% recognition accuracy for the test
set for up to four occlusions of ~2% of the input field size and
continue to show good performance for up to four occlusions
of ~23% of the input field size each [37], but the neural net-
works must be training with hundreds of images.

In 1997 Levkovitz et al. extended the invariance of the Fang—
Hausler transform to obtain a recognition process that can be
successfully applied to binary images that simultaneously under-
go extensive PRS (position, rotation and scale) changes. But their
methodology doesn’t work using gray scale images [38].

In more recent years, in 2012 Abdel-Kader et al. developed
an invariant rotation methodology for the recognition of pat-
terns in digital images reaching 99.5% recognition rate, how-
ever this methodology does not contemplate variations in po-
sition and scale. The methodology proposed in this work
reaches 100% of the recognition rate using only rotation var-
iations in the images [39].

Comparing these results with the ones obtained by Solorza
and Alvarez-Borrego in 2015 [40] and by Garza-Flores and
Alvarez-Borrego in 2018 [41] this methodology improves
their results due to the fact that their results are only efficient
to position and rotation variations, and this work is



J Sign Process Syst

suitable for position, rotation and scale variations. On
the other hand, compared to the results obtained by
Lerma-Aragéon and Alvarez-Borrego [3], the results of
the methodology shown in this work surpass theirs be-
cause they can identify the species using only one target
with a high confidence level.

Solis-Ventura and Alvarez-Borrego [8] obtained results
with a level of confidence of at least 95.4% using a method-
ology invariant to position, scale, and rotation, however they

Table 3  Correlations confidence for rotation variation for the four
signatures of each image.

Confidence of correlations for rotation variation (%)

Image Signatures

SR_Hy Si_ty Sr_H, Si_m,
1 100.00 100.00 100.00 100.00
2 100.00 100.00 100.00 100.00
3 100.00 100.00 100.00 100.00
4 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00
9 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00
11 100.00 100.00 100.00 0.24
12 100.00 100.00 100.00 100.00
13 100.00 100.00 100.00 2.87
14 100.00 1.77 100.00 2.30
15 100.00 100.00 100.00 3.21
16 100.00 100.00 100.00 100.00
17 100.00 100.00 100.00 100.00
18 100.00 100.00 100.00 100.00
19 100.00 100.00 100.00 100.00
20 100.00 3.16 100.00 3.54
21 100.00 100.00 100.00 100.00
22 100.00 100.00 100.00 100.00
23 100.00 2.30 100.00 100.00
24 100.00 100.00 100.00 100.00
25 100.00 100.00 100.00 100.00
26 100.00 100.00 100.00 100.00
27 100.00 100.00 100.00 4.69
28 100.00 100.00 100.00 100.00
29 100.00 100.00 100.00 100.00
30 100.00 100.00 100.00 100.00

The black values mark the lowest confidence for each image.

Table 4 Correlations confidence for rotation and scale variation for the
four signatures of each image. The black values mark the highest
confidence for each image.

Confidence of correlations for rotation and scale variation (%)

Image Signatures

Skr_H, NS Sr_H, N
1 94.70 95.96 96.19 96.15
2 95.52 95.04 95.40 95.00
3 91.74 96.40 92.06 98.79
4 82.80 97.00 85.22 99.47
5 90.70 92.68 91.09 92.53
6 97.45 97.74 95.47 100.00
7 97.38 96.64 95.58 96.64
8 87.25 90.51 87.02 92.69
9 96.25 96.64 96.30 97.04
10 96.23 100.00 95.89 99.13
11 100.00 100.00 100.00 0.24
12 93.81 90.39 93.70 93.66
13 99.49 100.00 99.81 0.30
14 99.87 0.04 98.93 0.07
15 97.62 96.57 97.62 0.10
16 94.25 95.73 96.64 96.40
17 97.70 98.08 97.70 98.08
18 98.90 100.00 98.93 100.00
19 100.00 100.00 100.00 100.00
20 99.78 0.17 98.23 0.25
21 98.62 98.66 98.98 99.02
22 98.47 99.60 100.00 98.87
23 96.40 0.01 96.17 96.93
24 94.64 98.81 94.66 98.68
25 96.62 94.74 95.74 95.00
26 96.21 99.62 96.17 99.56
27 100.00 100.00 100.00 1.67
28 98.30 95.55 98.28 96.83
29 100.00 98.83 100.00 100.00
30 97.42 99.53 96.70 98.87

used a range of scales of £10% and an adaptive non-linear
correlation, while the proposed method in this work uses a
variety of scales of +20% and a Pearson correlation, which
is easier to implement, generating results a little lower than
theirs, with a confidence level of 92.68% in the least.

The comparison of the results of this work with those ob-
tained by Barajas-Garcia et al. is complicated because the
level of confidence obtained by them, which is at least 95%,
is calculated using the Z-Fisher transform and in this work, it
is not. However, the methodology proposed in this paper
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accepts a scale range of +20% and theirs only 10, but their
method is useful in the recognition of images even if they
contain fragments of up to 49% of the area of the object.

5 Conclusions

It is possible to identify objects in digital images using the
fractional Fourier-radial transform proposed in this work. All
the photos reach at least 92.68% of confidence in all correla-
tions. The mean of the highest confidence values for the scale
variation correlations is 98.47%, for the rotation variation cor-
relations it is 100%, and for the rotation and scale variation
correlations its 98.15%. These results tell us about the high
effectiveness of this new methodology.

Using the methodology presented, you obtain a confidence
level of at least 92.68% invariant to position, scale, and rota-
tion, supporting scale variations of +20% and performing a
straightforward correlation, and Pearson correlation.

In the case of obtaining a useless signature of an image,
there are still three more signatures to use and select the best
one, which reduces the probability of getting four unnecessary
signatures of an image.
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