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In this paper, algorithms invariant to position, rotation, noise and non-homogeneous illumination are presented. Here,
several manners are studied to generate binary rings mask filters and the corresponding signatures associated to each
image. Also, in this work it is shown that digital systems, which are based on the k-law non-linear correlation, are
k-invariant for 0 < k < 1. The methodologies are tested using greyscale fossil diatoms digital images (real images),
and considering the great similarity between those images the results obtained are excellent. The box plot statistical
analysis and the computational cost times yield that the Bessel rings masks are the best option when the images contain
a homogeneous illumination and the Fourier masks digital system is the right selection when the non-homogeneous
illumination and noise is presented in the images.

Keywords: image processing; pattern recognition; digital systems; binary rings masks; one-dimensional signatures

1. Introduction
One of the goals in the pattern recognition field is to
recognize objects automatically with a high level of
confidence and a low cost of computational time; it does
not matter if the objects are rotated, scaled, displaced, with
different kind of noise, different illumination or perhaps
they are partially hidden or we have a fragment of it only.
The design of new filters for pattern recognition based on
correlation has attracted considerable attention [1–10]; most
of these filters have been used to recognize micro and macro
structures.

Recently, a new methodology based on one-dimensional
signatures of the images was presented [9,10]. In these
works, shift and rotation were taken into account in the
correlation process and different ways to generate the
binary rings masks were studied. In this paper, we showed
more alternatives to generate the binary rings masks;
moreover, illumination and noise variations in the objects
to be recognized were analysed. Also, the independence of
the system in the non-linear factor k is determined. Finally,
here is established the robust algorithm based on binary
rings masks that uses lesser computational time.

Because the goal of these systems is to be used in the
classification of digital images taken from the life, that
is, digital images not generated by computers, therefore
the objects used in this paper are microstructures called
diatoms (real images). The diatom samples are from Cuenca

∗Corresponding author. Email: selene.solorza@uabc.edu.mx

de San Lázaro in Baja California and they were taken in
1996 in an oceanographic ship called El PUMA [11]. Fossil
diatoms are photosynthetic organisms that live in freshwater
or marine and they constitute a very important part of the
phytoplanktons. The presence of diatom valves in marine
paleoenvironments has been used for studying the climatic
changes as well as geomorphological processes [12,13].The
identification of diatom fossils requires the analysis of a
great number of valves per sample. Generally, to obtain
relative abundances and diversity indexes, diatom counts
must go from 400 to 107 structures per gram [14]. Thus,
the analysis of these samples requires the investment of
much time and experience. Moreover, these kinds of images
are one of the best options to test the efficiency of the
pattern recognition digital system because a lot of them are
morphologically similar.

The material in this work is organized as follows: in
Section 2, the digital system invariant to position and
rotation based on the Fourier binary rings masks is
explained. Section 3 presents the digital system by the Bessel
binary rings masks. Section 4 shows the comparison
analysis of the methodologies in Sections 2 and 3, and that
given in [15] called vectorial signatures. The confidence
level of each of those methodologies, the computational
time, noise and the non-homogeneous illumination analy-
sis are presented. Finally, in Section 5 the conclusions are
given.

© 2015 Taylor & Francis
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2. Digital system by the Fourier binary rings masks
The digital system works with n ×n greyscale images only.
For a given image I , (x, y) represent a pixel of the image and
I (x, y) its corresponding intensity value, x, y ∈ {1, . . . , n}
and the centred pixel (cx , cx ) of the image is given by

cx =
{ n

2 + 1, if n is even,

⌊ n
2 ⌋ + 1, if n is odd,

(1)

here ⌊z⌋ rounds z to the nearest integer towards −∞. In
Figure 1(a), n = 307 and cx = 154.

2.1. The Fourier binary rings masks
The masks of a selected image I can be built by taking the
real and imaginary parts of its Fourier transform,
that is, Re(FT (I )) and Im(FT (I )), Figure 1(b) and (c),
respectively.

The binary disk mask D is defined like,

D =
{

1, if d ((cx , cx ), (x, y)) ≤ n,

0, otherwise,
(2)

where x, y ∈ {1, . . . , n} and d(p, q) is the Euclidean
distance between p and q points, thus the D image is cen-
tered in the (cx , cx ) pixel and has a diameter of n-pixels.
Figure 1(d) presents a disk filter of diameter 307.

The binary disk mask D is used to filter the image
Re(FT (I )) as it is shown in Figure 1(e). Also, the image
Im(FT (I )) is filtered by D (Figure 1( f )). Mathematically,
those operations are given by

fR = D ∗ Re(FT (I )), (3)

f I = D ∗ Im(FT (I )), (4)

where ∗ means an element-wise product or Hadamard
product. From the fR image, 180 profiles were obtained,
sampling the entire circle. The profiles are n-pixels length
and the (cx , cx ) pixel is a common point of all of them.
Analogously for f I image. Figure 1(e) and ( f ) show the
zero-degree profiles P0

R and P0
I and the discontinuous black

lines represent some profiles separated !θ = 20◦ from each
other. In general, the profile equations are expressed as

Pθ
R
(x) = fR (x, y(x)) , (5)

Pθ
I
(x) = f I (x, y(x)) , (6)

where x = 1, . . . , n, y(x) = m(x − x1)+ y1, m is the slope
of y, (x1, y1) = (cx + cx cos θ, cx − cx sin θ) and (x2, y2)

= (cx + cx cos(θ + π), cx − cx sin(θ + π)) are the two
distinct end points of that line segment and θ is the angle that
y has in respect to the horizontal axis in the Cartesian plane
(considering that the origin (0, 0) of the Cartesian plane is
set at the centre pixel of the image (cx , cx )), and sampling
is performed in this manner for the entire disc. Next, the
addition of the squared intensity values in each profile is
computed, that is,

sθ
R

=
n∑

x=1

(
Pθ

R
(x)

)2
, (7)

sθ
I

=
n∑

x=1

(
Pθ

I
(x)

)2
, (8)

and the profile whose sum has the maximum value will be
selected,

αβ = max
0≤θ≤179

{sθ
R
}, TR = Pβ

R
, (9)

αγ = max
0≤θ≤179

{sθ
I
}, TI = Pγ

I
, (10)

where β and γ are the angles of the profiles in fR and
f I whose sum has the maximum value. TR and TI are
called the maximum energy profiles. For example, Figure
1(e) shows the maximum energy profile for the real part
of the Fourier transform of the image in Figure 1(a), this
profile (TR ) is shown in the Cartesian plane in Figure 1(g).
Figure 1( f ) gives the maximum energy profile for the imag-
inary part of the Fourier transform of the image in Figure
1(a) and its representation in the Cartesian plane is shown in
Figure 1(h).

Based on Equation (9), the two binary functions can be
built,

Z R P (x) =
{

1, if TR (x) > 0,

0, if TR (x) ≤ 0,
(11)

Z RN (x) =
{

0, if TR (x) > 0,

1, if TR (x) ≤ 0,
(12)

where x = 1, . . . , n. Analogously, from Equation (10) the
two binary functions obtained are,

Z I P (x) =
{

1, if TI (x) > 0,

0, if TI (x) ≤ 0,
(13)

Z I N (x) =
{

0, if TI (x) > 0,

1, if TI (x) ≤ 0,
(14)

the first sub-index in Equations (11)–(14) indicates if the
profile comes from the real (R) or the imaginary (I ) part of
the Fourier transform of the image. The second sub-index
P means that the positive values of the profile are taken and
N represents that the non-positive values are considered.
Finally, taking the vertical axis x = 154 as the rotation
axis, the right branch of the graphs of Z R P , Z RN , Z I P and
Z I N are rotated 180◦ to obtain concentric cylinders of one
height, different widths and centred in (cx , cx ) pixel [9,10].
Taking a cross-section of those cylinders, the binary rings
masks associated to the given image are realised. Following
the sub-index notation, the binary rings masks are named
as, MR P , MRN , MI P and MI N . Figure 2 shows the masks
associated to the image in Figure 1(a).
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Figure 1. Procedure to obtain the maximum energy profiles. The ∗ means an element-wise product or Hadamard product. Only for
visualization purposes (e) and ( f ) figures are shown in log scale.
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Figure 2. The Fourier binary rings masks associated to the image in Figure 1(a).

Figure 3. Signature example procedure. The ∗ means an element-wise product. Only for visualization purposes the (b) and (d) figures are
shown in log scale.

2.2. The one-dimensional signatures
The digital system uses the modulus of the Fourier transform
of the image, |FT (I )|, because it is invariant to translation,
that is, |FT (I (x, y)) = FT (I (x +τ, y+ζ ))|, where τ, ζ ∈
R, hence the system is invariant to translation.

To obtain the invariant to rotation, one-dimensional (1D)
signatures based on binary rings masks are built. The first

step in the signature construction is to filter the modulus
of the Fourier transform of the image by the binary rings
masks. For example, the amplitude spectrum (Figure 3(b))
of Figure 3(a) is filtered by the binary rings mask MR P
(Figure 3(c)) as

HR P = MR P ∗ |FT (I )|. (15)
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Figure 4. The signatures associated to image in Figure 3(a).

Figure 5. Algorithm for the digital system by the Fourier binary rings masks.

The result of Equation (15) is presented in Figure 3(d).
The rings in HR P are numbered from the centre towards
outside to obtain the following set,

Index = {ring index ∈ n̄}, (16)

where n̄ = {1, . . . , n}. The addition of the intensity values
in each ring in the image HR P are calculated to build the

function

signature = Index → A ⊂ R,

signature(ring index)

=
∑

HR P (x, y),

if HR P (x, y) belongs to ring index. (17)
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Figure 6. Database of 21 diatoms. (The color version of this figure is included in the online version of the journal.)

Because the cardinality of A is bigger than one, the graph
of the signature function is called 1D signature of the
image I . When the cardinality of A is one, then we have a
scalar signature of I . Figure 3(e) shows the 1D signature
constructed by the binary rings mask MR P , hence it is
named TR P . Analogously, TRN , TI P and TI N are obtained
using MRN , MI P and MI N , respectively. Figure 4 presents
the four signatures of the image in Figure 3(a). Because the
number of rings in each mask is different then, the length
of the signature is also different.

2.3. The digital system procedure
In Figure 5 the algorithm of the digital correlation system
invariant to position and rotation is given. In the first step,
the target and problem images are chosen. After that, the
real and imaginary parts of the Fourier transform of the

target are obtained, respectively, in steps 2 and 3. In step 4,
the binary profiles based on Equations (11)–(14) are com-
puted. Next, the Fourier binary rings masks are built
(step 5). Thereafter, the modulus of the Fourier transform
of the target (|FT (T )|) and the problem image (|FT (P I )|)
are given (steps 6 and 7). Then, both images (|FT (T )| and
|FT (P I )|) are filtered by the binary rings masks MR P ,
MRN , MI P and MI N (step 8). In step 9, eight signatures are
obtained following the procedure described in Section 2.2;
here T represents the signatures that come from the target
and P is for those associated to the problem image, and the
sub-index follows the nomenclature of the corresponding
masks used to construct the signature. To obtain an efficient
digital system, each signature will be weighted by their
scalar factor (step 11), given by

ηS = max |AN L (S)|, (18)
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Figure 7. T and P I represent the signatures of the target and the problem image, respectively. (a) The box plot for the mean of the
maximum values of the non-linear correlation using target A and k = 0.3. (b) Amplification around the zone of target A. (c) The box
plot for the mean of the maximum values of the non-linear correlation using target E and k = 0.4. (d) Amplification around the zone of
target E.

which comes from the non-linear autocorrelation

AN L (S) = |FT −1
(∣∣∣FT (S)|k eiϕ |FT (S)|k e−iϕ

)∣∣∣ ,
(19)

where S = TR P , TRN , TI P , TI N , PR P , PRN , PI P and PI N ,
and ϕ is the phase of the Fourier transform of the signature
and 0 < k < 1 is the non-linear coefficient (step 10).

Once, each signature is weighted (step 12) and named S j
for the target and Fj for the problem image ( j = R P , RN
and I P or I N ), the non-linear correlation of the signatures
is computed as

CN L (S j , Fj )

= FT −1
(
|FT (Fj )|k eiφ |FT (S j )|k e−iϕ

)
,

(20)

where ϕ and φ are the phases of the Fourier transform of
the signatures for the target and the problem image, respec-
tively. In step 13, the maximum values of the magnitude for
the four correlations are obtained to get the mean of these
values (step 14). If the mean value of the problem image is
similar to the mean value of the target (P I ≈ T ), then the
problem image is the same as the target, otherwise they are
different.

2.4. Results
The algorithm in Figure 5 was tested using the 307 × 307
greyscale diatom digital images shown in Figure 6. Each
image was selected as target, thus the target database has 21
elements. The target images were rotated 360◦, one degree
by one degree, until the circle was completed; hence, in
the problem images database 7,560 images were processed.
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Table 1. Confidence level (in %) of the digital system by Fourier masks.

Diatom k0.1 k0.2 k0.3 k0.4 k0.5 k0.6 k0.7 k0.8 k0.9

A 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
B 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
C 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
D 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 68.3 d/R
E 95.4 95.4 95.4 95.4 w/L 95.4 95.4 95.4 95.4 68.3 d/N
F 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
G 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
H 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
I 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 68.3 d/P
J 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
K 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
L 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
M 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
N 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
O 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
P 95.4 95.4 95.4 95.4 95.4 95.4 w/K 95.4 95.4 95.4
Q 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
R 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
S 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
T 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
U 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4

Table 2. Computational time ranking from the lowest (1) to the
highest (15) of the digital systems based on the Fourier binary
rings masks.

# Masks Confidence level %

1 MR P , MRN , MI P , MI N 95.4
2 MR P , MI P , MI N 95.4
3 MR P , MRN 95.4
4 MRN 95.4
5 MRN , MI P 95.4
6 MR P , MI P 95.4
7 MR P , MRN , MI P 95.4
8 MR P , MRN , MI N 95.4
9 MI P , MI N 95.4
10 MRN , MI P , MI N 95.4
11 MR P , MI N 95.4
12 MI P 95.4
13 MRN , MI N 95.4
14 MR P 95.4
15 MI N 95.4

Moreover, due to the rotation of the images, the saw-tooth
effect (noise) is taken into account, thus the digital system
is more robust for the pattern recognition problem. The
average maximum values of the magnitude for the non-
linear correlations is box plotting using the mean of those
average values with two standard errors (±2SE). Figure
7(a) shows an example of a box plot when the diatom A is
the target and k = 0.3 was used in Equation (20). There is
not an overlap of the whiskers (Figure 7(b)), hence it can
be concluded that the system has a confidence level at least
of 95.4% to identify diatoms A.

Figure 8. The graph of the ratio of the Bessel function of first
kind and first order by its argument. Here, the function is defined
as one when x = cx .

The result of the statistical analysis of the system is pre-
sented in Table 1, the confidence level is given in percentage
and the notation of 68.3% d/X means that the system has a
confidence level of 68.3% due to image X, and 95.4 w/X
means that the system has a confidence level of 95.4%
without considering image X. Also, in Table 1 the results
of the study of the non-linear factor k in Equation (20)
are given. As it is expected, as k goes to one, the confi-
dence level decreases, that is, the non-linear equation ap-
proaches to the linear limit. Based on Table 1, it can be
concluded that the system works excellently for 0 < k < 1
because the non-linear equation is non-commutative, that
means for example if k = 0.4, the system using diatom
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E as target will name erroneously some diatoms L as E
(Figure 7(c) and (d)). But the system identified diatoms L
without mistakes; then all the images that the system classi-
fied as diatoms E, will be tested again using the diatom L as
the target, hence the system will identify without doubt the
diatoms L and the rest are diatoms E, therefore the complete
identification is done, but it will use more computational-
time. The same idea works for the other cases presented in
Table 1. Furthermore, the digital system was tested using
all arrangements of the four masks, obtaining basically that
the system has a confidence level at least of 95.4% and it is
independent of the non-linear factor k. From this analysis,
it can be concluded that when the four masks are used, the
digital system presents less computational cost time, which
is the algorithm given in Figure 5. Table 2 gives the ranking
in time performance (from the lowest, 1, to the highest, 9) for
all combinations of the four masks. Also, studies were done
without weighting the signatures, but the system presents
a confidence level lower than those given weighting the
signatures.

3. The digital system by Bessel masks
Now, an easier digital system of binary rings mask will be
build. To make it, the ratio of the Bessel function of first
kind and first order by its argument is taken, that is

f (x) =
{ J1(x−cx )

x−cx
, 1 ≤ x ̸= cx ≤ n,

1, x = cx ,
(21)

where cx is given in Equation (1). As shown in Figure 8, f
is centred at cx , it is symmetric and its x-axis length is n =
307. As in the case of the binary rings masks construction
in Section 2.1, here there are two choices to build the binary
function

Z P (x) =
{

1, if f (x) > 0,

0, if f (x) ≤ 0,
(22)

Z N (x) =
{

0, if f (x) > 0,

1, if f (x) ≤ 0.

After rotating 180 degrees the right branch of the graphs
of Z P and Z N , the binary rings masks BP and BN are
obtained. Once the masks are set, the signatures associated
to a given image I are computed as in Section 2.2, but
instead of using MR P , MRN , MI P and MI N masks here we
used BP and BN as nomenclature.

3.1. The digital system
Figure 9 shows the procedure for the algorithm invariant to
position and rotation using Bessel masks. In this method, the
target and the problem image are selected (step 1). Then, the
moduli of the Fourier transform of the images are obtained
(step 2). The decision, in step 3, will be taken to build the
binary mask of concentric circular rings. In step 4, after
choosing one of the two options, the Bessel mask is con-
structed. In step 5, the mask is applied to the |FT (T )| and
|FT (P I )|. Next, the signature of the problem and the target
images is obtained (step 6). Finally, if the maximum value
of the magnitude for the non-linear correlation, Equation
(20), is significant, the P I contains the target; otherwise, it
has a different object to the target (step 7).

3.2. Results
Table 3, shows the results of the digital system in Figure 9
using the Bessel mask BN P , the first sub-index would indi-
cate whether the signatures are weighted by the maximum
of the non-linear autocorrelation value (W ) or not (N ), the
second sub-index indicates if Equation (22) is taken, that
is the positive values in the profile (P) or the non-positive
values (N ) are considered, Equation (??). The confidence
level is given in percentage and the notation 68.3% d/X

Figure 9. Algorithm for the digital system of Bessel masks.
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Table 3. Confidence level (in %) of the digital system by BN P mask.

Diatom k0.1 k0.2 k0.3 k0.4 k0.5 k0.6 k0.7 k0.8 k0.9

A 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
B 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
C 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
D 95.4 95.4 95.4 68.3 d/B 95.4 95.4 95.4 95.4 95.4
E 95.4 95.4 95.4 95.4 68.3 d/T 68.3 d/L 95.4 95.4 95.4
F 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
G 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
H 95.4 95.4 95.4 95.4 95.4 95.4 68.3 d/C,D 95.4 95.4
I 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
J 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
K 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
L 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
M 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
N 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 w/O 95.4
O 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
P 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
Q 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
R 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 w/B 95.4
S 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4
T 95.4 95.4 95.4 95.4 95.4 95.4 68.3 d/O 95.4 95.4
U 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4

Table 4. Computational time ranking from the lowest (1) to the
highest (9) of the digital systems based on Bessel masks.

# Masks Confidence level %

1 BN P 95.4
2 BN P , BN N 95.4
3 BN P , BN N , BW P , BW N 95.4
4 BN N 95.4
5 BW P , BW N 95.4
6 BW N 95.4
7 BN N , BW P 95.4
8 BW P 95.4
9 BN P , BW N 95.4

means that the system has a confidence level of 68.3%
due to image X and 95.4 w/X means that the system has
a confidence level of 95.4% without considering images X.
According to Table 3, the system works excellently and the
confidence level of the system reduces as the non-linear
factor k goes to one. Hence, based on the results presented
in this table to obtain the less computational time the choice
of k should be 0.1, 0.2 or 0.3.

Furthermore, an analysis of the efficiency of the system
using different arrangements of the masks were done. The
system was tested for the non-linear scalar values k =
0.1, 0.2, . . . , 0.9 for the different combinations of the sig-
natures obtained by the masks BN P , BN N , BW P and BW N ,
and the results are presented in Table 4. The results for all of
these combinations showed that the system has an excellent
performance, thus it is independent of the non-linear factor
k, the issue was the computational cost time. For example, as
is shown in Table 3, if you have a k = 0.4 the system using

diatom D as target will name erroneously some diatoms B
as D. But the system identified diatoms B without mistakes,
then all images that the system classified as diatoms D will
be tested again using the diatom B as the target, hence the
system will identify without doubt the diatoms B and the
rest are diatoms D, therefore the complete identification is
done, but in this way the computational time used will be
more. The same idea works for the other cases presented in
Table 4, obtaining that the system using the BN P has less
computational cost time.

4. Comparison analysis
A comparison of the digital system in Figure 5 (Fourier
masks), Figure 9 (Bessel masks) and that developed by
Fimbres-Castro, et al. [15] is presented. Also, the vecto-
rial signatures digital system was tested using the database
image in Figure 6. The three algorithms have an excellent
performance, obtaining each of them a confidence level of
at least 95.4%.Also, they show that their responses are inde-
pendent of the non-linear factor k (Equation (20)). The dif-
ference in the three digital systems analysed lies in the time
consumption, the algorithm in Figure 5 uses 0.3190 sec,
the system in Figure 9 utilizes 0.0780 sec and the vectorial
signature employs 0.0923 sec. The times were computed in
a MacBook Pro with a processor of 2.3 GHz Intel Core i5
and 8 GB of RAM and memory module 1333 MHz DDR3.

4.1. Noise analysis
To test the performance of the systems based on Bessel
masks, Fourier masks and vectorial signatures, the
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Figure 10. (a) The systems under study performance when images have additive Gaussian noise. (b) Performance of the four Fourier
masks. (c) Response of the Fourier2 system.

Table 5. Illumination analysis results with k = 0.1. Confidence level (in %).

Diatom MR P , MRN , MI P , MI N BN P Vectorial signatures

A 95.4 95.4 95.4
B 95.4 95.4 95.4
C 95.4 95.4 95.4
D 95.4 95.4 95.4
E 95.4 95.4 95.4
F 95.4 95.4 95.4
G 95.4 95.4 95.4
H 95.4 95.4 95.4
I 95.4 95.4 95.4
J 95.4 95.4 95.4
K 95.4 95.4 95.4
L 95.4 95.4 95.4
M 95.4 95.4 95.4
N 95.4 95.4 95.4
O 95.4 95.4 95.4
P 95.4 95.4 95.4
Q 95.4 95.4 95.4
R 95.4 95.4 95.4
S 95.4 95.4 95.4
T 95.4 95.4 95.4
U 95.4 95.4 95.4



862 S. Solorza and J. Álvarez-Borrego

Figure 11. (a) The systems under study performance when images have salt and pepper noise. (b) Performance of the four Fourier masks.

discrimination coefficient or discrimination capability was
used, it is defined as [16],

DC = 1 − max |CN L (ST , SN )|2
(P(0))2 , (23)

where P = |CN L(ST , ST N )| and ST , ST N and SN are
the signatures, respectively, of the target, the target with
noise and the background image with noise. For the sake of
comparison, the performance of SURF methodology when
the images have noise is included, but here the results are
given in terms of the repeatability parameter r [17],

r = C (T, P I )
mean(NT , NP I )

, (24)

where C(T, P I ) represents the number of the common
detected points in the target T and the problem image P I ;
NT and NP I are the number of points detected in T and
P I , respectively.

Figure 10(a) presents the graphs of the mean of the DC
response for the system using the four Fourier masks
(Fourier1), the system using the two Fourier masks MRN
and MI P (Fourier2), the system using the BP Bessel mask,
the system using the BN Bessel mask, the vectorial signa-
tures methodology and the repeatability analysis (r values)

for the SURF algorithm. The images were altered with
additive Gaussian noise of media zero and variance from
0 to 0.55, using 100 images per sample. In Figure 10(a) it
is shown that the vectorial signatures system has the best
response under this kind of noise, followed for the Fourier2
algorithm. The Fourier1, BP Bessel mask and SURF algo-
rithms have the same performance and the worst results are
given by the BN Bessel mask. Figure 10(b) shows that the
response of the Fourier1 system reduces its performance
due to the contribution of the MR P and MI N masks. When
those masks are not being considered in the system, that is
Fourier2 methodology, then its performance increases con-
siderably. Moreover, the response of Fourier2 system will
be better than the vectorial signatures for variance bigger
than 0.5, Figure 10(c). The same analysis when performed
using salt and pepper noise, obtained the same results as the
additive Gaussian noise, Figure 11.

4.2. Illumination
The algorithms by Fouriers masks (Figure 5), Bessels masks
(Figure 9) and the vectorial signatures [15] were tested
using problem images altered with eight different types of
non-homogeneous illumination, Figure 12. The reference
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Figure 12. Non-homogeneous illuminations types.

images (Figure 6) were rotated one degree by one degree
(until complete the circle) and all of them were altered
using the eight different types of non-homogeneous illu-
mination. Hence, the algorithms were proved with 60,480
problem images with different illuminations. Table 5 shows
the results of the analysis of the illumination effect in the
systems. Basically, the three systems work excellently,
hence they are robust in the pattern recognition of images
that have non-homogeneous illumination.

5. Conclusions
Using different ways to build the binary rings masks, several
digital systems of non-linear correlation invariant to po-
sition, rotation, noise and non-homogeneous illumination
were presented. The systems were tested using 21 differ-
ent kinds of fossil diatom greyscale images (real images).
The confidence level analysis shows that all systems work
efficiently and their responses are k invariant. The compu-
tational times analysis yields that the Bessel rings masks

algorithms are the best option, but the noise analysis indi-
cates that they are the worst systems for images that have
noise and the Fourier system considering only the MRN and
MI P masks is a good choice when noise is presented.
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